
Unencumbered Full Body

Interaction in Video Games
Jonah Warren
MFA Design and Technology
Parsons School of Design
NewYork City, New York
April 2003

Supervisor: Golan Levin

Thesis URL: http://a.parsons.edu/~jonah/thesis/jonah_thesis.pdf
URL: http://a.parsons.edu/~jonah
email: jonah@parsons.edu

2

Abstract

This thesis offers an alternative to the stationary, hand-
centric experience that most existing video games provide.
It proposes a scenario in which the player can affect action
in the game by using his or her entire body, free of wires
and controllers. Through the use of computer vision
technology, this thesis attempts to develop an interactive
vocabulary to aid in the creation of full body based video
games. It then proposes a series of functional game
scenarios, or “gamelets,” that demonstrate how these
interactions can be incorporated into game contexts.

3

Acknowledgements

I would like to thank the following people for their support,
encouragement and inspiration.

Devjit Basu

Melissa I. Bermudez

Ross Bochnek

Carrie Burgener

Eddy Chai

Perry Chan

Wen-Hsuan Chen

Haesung Chung

Catherine Herdlick

Juan Herrara

Joseph Chi Huang

Bo Yeon Joo

Yu Jin Jung

Elaine Castillo Keller

Peter Lee

Barbara Morris

Paula Pelletier

Alina Podkolinska

Katie Salen

Steven Sanborn

Yoomee Song

Eddie Teng

Wade Tinney

David Warren

Tessa Warren

Loretta Wolozin

Mateo Zlatar

A special thanks goes to Zach Lieberman for the C++
OpenCV template. Also, a special thanks to Golan Levin.
His limitless enthusiasm, rigorous critique and creative vi-
sion served as invaluable resources throughout this thesis
process.

4

Contents
Title
Abstract
Acknowledgements
Table of Contents
Table of Figures

1. Introduction

 1.1. Motivation
 1.2. Overview of Thesis
 1.3. Contributions

2. Background

 2.1. Related Projects
 2.1.1 Krueger’s Videoplace
 2.1.2 The Vivid Group’s Mandala Gesture
 Extreme System
 2.1.3 Reality Fusion’s GameCam
 2.1.4 Intel’s Me2Cam Virtual Game System
 2.2. Advantages of Using Computer Vision in
 Video Games

3. Methodology

 3.1. Initial Interests
 3.2. Abstracting Action
 3.2.1. Case Studies
 3.2.2. Initial Project Proposal
 3.2.3. Initial Prototypes
 3.2.3.1. Prototype I
 3.2.3.2. Prototype II
 3.2.4. Project Reformulation
 3.3. Unencumbered Full Body Interaction
 3.3.1. Project Goals and Design Process
 3.3.1.1. Design Goals
 3.3.1.2. Design Process
 3.3.1.3. Self Applied Constraints
 3.3.2. Technical Configuration
 3.2.2.1. Envisioned Installation Set
 Up

5

 3.2.2.2. Video Processing
 3.2.2.3. Background Subtraction
 3.2.2.4. Testing Setup
 3.3.3. Basic Interactive Building Blocks
 3.3.3.1. Contact
 3.3.3.2. Overlap
 3.3.3.3. Reflect
 3.3.4. Game Interactions
 3.3.4.1. Contact Interactions -
 Hold, Redirect, Shoot
 3.3.4.2. Overlap Interactions -
 Float, Grow, Push
 3.3.5. Gamelets
 3.3.5.1. Duck and Jump
 3.3.5.2. Collide
 3.3.5.3. Color Match
 3.3.5.4. Two Touch
 3.3.5.5. Color Shooter

4. Evaluation and Analysis

 4.1. General Gamelet Experiences and Playability
 4.1.1. Duck and Jump
 4.1.2. Collide
 4.1.3. Color Match
 4.1.4. Two Touch
 4.1.5. Color Shooter
 4.2. Comparative Evaluation
 4.1.1. Athleticism
 4.1.2. Expressivity
 4.1.3. Whole Body
 4.1.4. Vocabulary of Action
 4.1.5. Playability
 4.3. Project Evaluation

5. Conclusions

 5.1. Conclusion
 5.2. Future Directions

Appendix A. Gamelet Pseudocode
Bibliography

6

Figures

1: A user interacting with Videoplace.
2: Videoplace’s installation setup.
3: Krueger’s Critter.
4: Krueger’s Digital Drawing.
5: Krueger’s Hanging by a Thread.
6: The Mandala GX System.
7: A user reaches out to move in Vivid Group’s Sharkbait.
8: A player dunks in the Vivid Group’s Full Court Slam.
9: Two users play the Vivid Group’s Volleyball.
10: Two users play the Vivid Group’s Snowboarding.
11: The Mandala GX System’s high score board.
12: A user dribbles in Full Court Slam.
13: Reality Fusion’s GameCam box.
14: A user interacts with Reality Fusion’s Basketball.
15: A user fights a virtual clown in Reality Fusion’s Karate.
16: The box for Intel’s Me2Cam Virtual Game System.
17: A user playing Me2Cam’s Bubble Mania.
18: A user interacting with Me2Cam’s Club Tune.
19: A user playing Me2Cam’s Pinball.
20: A user interacting with Me2Cam’s Fun Zone.
21: A user playing with Me2Cam’s Snow Surfin’.
22: The oscilloscope from Tennis for Two.
23: A screenshot of Atari’s classic Pong.
24: A continuum of representing action.
25: Various versions of digital ping pong.
26: Various versions of digital paintball.
27: Versions of Duck and Jump placed on the continuum.
28: First prototype for Duck and Jump.
29: The second Duck and Jump prototype.
30: A sketch of the envisioned interactive setup.
31: Background subtraction algorithm.
32: The testing environment.
33: The testing environment from the user’s point of view.
34: The Contact interaction.
35: The Overlap interaction.
36: The Reflect interaction.
37: The Shoot interaction.
38: The Float interaction.
39: Duck and Jump screenshot.
40-43: A sequence of frames from Duck and Jump.
44: A screenshot from Collide.

7

45-48: A sequence of frames from Collide.
49: A screenshot from Color Match.
50-53: A sequence of frames from Color Match.
54: A screenshot of Two Touch.
55-58: A sequence of frames from Two Touch.
59: A screenshot of Color Shooter.
60-63: An sequence of frames from Color Shooter.
64: A screenshot from Duck and Jump.
65 and 66: Two screenshots from Collide.
67 A screenshot from Blix.
68: A screenshot from Crash
69: A screenshot from Color Match.
70: A screenshot from Two Touch.
71: A screenshot from Color Shooter.
72: Icons to aid in the comparative analysis of the gamelets.
73: Athletic experience of each gamelet.
74: Expressive interaction of each gamelet.
75: Full body interaction in each gamelet.
76: Types of interactions are available in each gamelet.
77: How fun each gamelet is to play.

8

1. Introduction

1.1. Motivation

As a child growing up at the same time video games were
emerging as a medium, I became fascinated with this new
form of gaming. I threw myself into their bleeping, pixelat-
ed worlds at every opportunity. These exciting new worlds
usually consisted of a blocky representation of a character
on a screen that could be moved around in a virtual space.
The character’s movement was constrained to a limited
number of predefined actions. While these game actions
were usually produced by some combination of mashing
buttons and pushing joysticks, these quick hand movements
were only a small percentage of the action that would occur
during an afternoon of video game playing. I would spend
hours jumping up and down in front of television screen,
as if somehow, my physical actions would help the jagged
heroes run, jump and shoot their way through the virtual
worlds they inhabited.

Although the scene I just described may be a bit exagger-
ated, it is not far from the truth. While not all video gamers
jump up and down while they play a game, most move their
body more than is needed. They bob their head, lean left
and right in sync with the character’s movement and dodge
virtual bullets. Though it seems we have a natural urge to
use our entire bodies when playing video games, very few
game designers have attempted to incorporate these more
expressive physical actions into their games.

Why is this the case? It certainly isn’t because of a lack of
technology. Over the past 20 years, technological advances
in computing (in fields such as computer vision, speech
processing, and wireless technologies) have made possible
interactive scenarios that could only be dreamed about in
the early days of Nintendo and Atari. However, the video
game industry has for the most part ignored these advances.
As a result, the interactive vocabulary of video games have

9

remained relatively unchanged for the past 30 years. The
image of the hunched over video gamer in front of a televi-
sion set, tethered to a gaming system frantically moving
their fingers, still applies.

This thesis attempts to challenge this traditional image of
video games. It does so by attempting to show how video
games can use these new interactive possibilities to create
games that not only incorporate our natural urges for physi-
cal action when playing games, but encourages them. Which
of the new interactive possibilities are we to use? What type
of input device can allow the flexibility needed to create
such games?

One of the interactive possibilities that the gaming industry
has failed to successfully incorporate into a gaming experi-
ence, but has enormous potential for the creation of playful
interactions, is video processing and computer vision. While
these technologies are not exactly new (experiments of its
use date back to the 1970’s), advances in computing have
made it so that now, in 2003, the average household PC is
fast enough to process video in real-time and thus utilize
computer vision technologies. Because computer vision al-
lows for an unencumbered full body interactive experience
and can recognize a enormous amount of possible interac-
tions, it is an obvious solution for creating games that incor-
porate dramatic physical movement. It is for these reasons
I chose to use computer vision as an interactive solution in
this thesis.

It is my hope that this thesis can start to challenge our con-
ceptions of what a video game experience can be. I hope to
show that through the use of computer vision based interac-
tions, game experiences can be created that encourage our
natural urges to engage in physical activity during play.

1.2. Overview of Thesis

The rest of this thesis is divided into four chapters. Chapter
2, Background and Context, describes and evaluates exist-

10

ing games and projects that incorporate computer vision
technologies and full body movement. The four projects
investigated range from art projects to interactive installa-
tions at museums to commercial game systems. They are:
Myron Krueger’s Videoplace, the Vivid Group’s Mandala
Gesture Xtreme System, Reality Fusion’s GameCam and
Intel’s Me2Cam. This section is concluded by presenting
five important advantages of using computer vision in the
creation of game experiences.

Chapter 3, Methodology, describes the process of formulat-
ing a concept and the final project itself. The first section,
Initial Interests, describes the initial interests I had in video
games which drove my creative process. The second section,
Abstracting Action, presents how this project was initially
envisioned and the prototypes that accompanied it. It then
describes how these prototypes were critically evaluated
and how the project was reformulated. The final section,
Unencumbered Full Body Interaction presents the final proj-
ect itself. After identifying my design process, a basic set
of computer vision based interactions to serve as building
blocks for the creation of more complex game interactions
is presented. I then describe the game interactions that were
developed from these building blocks, and finally, the game-
lets that show how these interactions can be used in game
contexts.

Chapter 4, Evaluation and Analysis, provides a detailed
evaluation and analysis of the project. This chapter is
divided into three sections. The first section, General Game-
let Experiences and Playability, describes the experience of
playing each gamelet, critically evaluates them and suggests
possible improvements. In the second section, Comparative
Evaluation, I comparatively evaluate how successfully each
gamelet incorporates the advantages of computer vision,
as well as their overall game play. The final section, Project
Evaluation, discusses the successes and failures of the proj-
ect as a whole, and the lessons learned.

In Chapter 5, Conclusions, I summarize the main conclu-
sions arrived at after the completion of this project and
discuss future possibilities and directions.

11

1.3. Contributions

This thesis proposes to help broaden our understanding of
the interactive possibilities in gaming. It attempts to do this
by conducting a study of the interactive possibilities that
computer vision technologies allow in gaming, and creating
a series of gamelets that realize these potentials. The contri-
butions of this thesis include:

1. A study of existing projects related to the creation
of computer vision based interactions and video
games.

2. A list of the advantages of using computer vision as
an interface in video games.

3. A vocabulary of computer vision based interactions
that incorporate these advantages.

4. A set of “gamelets,” or partial games, that show
how these interactions can be used in game contexts.

5. A detailed analysis and evaluation of these game-
lets.

12

2. Background

The following section represents the background research
done in the preparation for the creation of the final project.
This section is divided into two parts. The first section, Re-
lated Projects, investigates projects throughout the history of
video games and interactive media that inform the creation
of computer vision based game interactions. This section is
organized chronologically. It starts with an investigation of
Myron Krueger’s installation Videoplace (1975), one of the
first systems to allow participants to use their whole body
to interact with graphic objects. It continues with a descrip-
tion and evaluation of the Vivid Group’s, Mandala Gesture
Extreme System (1996), an interactive system which allows
users to participate in graphically rich computer vision
games. It then considers two commercial computer vi-
sion game systems: Reality Fusion’s GameCam (1999) and
Intel’s Me2Cam Virtual Game System (1999).

The second section, Advantages of Using Computer Vision
in Video Games, identifies five major advantages of using
computer vision as an interactive strategy in the creation of
computer games. These five advantages, identified dur-
ing my research, will serve as a guide for the creation and
subsequent evaluation of the interactions and gamelets I
propose in this thesis.

2.1. Related Projects

2.1.1. Myron Krueger’s Videoplace

Working in the 1970’s, Myron Krueger was one of the first
artists to seriously ask the question: “What are the various
ways in which people and machines might interact, and
which of these are most pleasing?” [Krueger 1993] Blurring
the boundaries between art and science, Krueger defined
a new medium, which he called interactive computer art,

13

whose primary goal was to explore possible answers to
this very question. In his book Artificial Reality II, Krueger
discusses this new medium and describes a series of in-
stallations he created in the 1970’s and 1980’s that allow
participants to interact with computers in novel ways. These
experiments were quite possibly the first attempts to incor-
porate full body movement in human computer interaction.

One of works described in Artificial Reality II, Videoplace,
is Krueger’s most famous work and one of the inspirations
for this project. Videoplace, shown in 1975, was an installa-
tion that allowed participants to use their whole bodies to
interact with computer generated graphic objects. In the
installation, the participant faces a projection screen and a
video camera. Behind the user is placed a backlit piece of
translucent plastic to help the computer distinguish the par-
ticipant from the background. The live video image of the
participant is fed through a computer which extracts the
participant’s silhouette, which is then projected in front of
them along with various graphic objects.

Videoplace was designed as an interactive medium and not
an individual art piece. As such, its goal was not to provide
a single interactive experience, but to provide as many dif-
ferent and varied interactive experiences as possible so as
to demonstrate its potential richness as a medium. To do
this, Kreuger designed over 50 different interactive experi-
ences. The installation was designed to change between the

Figure 2: Videoplace’s instal-
lation setup [Kreuger 1993].

Figure 1: A user interacting
with Videoplace [Ars Elec-
tronica 1999].

14

various interactive experiences when the user stepped away
from the piece. Thus, by repeatedly stepping away from and
back into the installation, the user could experience mul-
tiple interactions.

In order to better understand the types of interactions
Krueger created for the Videoplace system, I will quickly de-
scribe the three of its interactions that are the most playful,
and thus most relevant to my project.

Critter: This was the most popular of the interactive
experiences developed in Videoplace [Krueger 1993].
In Critter, the participant interacts with a small sprite
with a playful personality. The critter is represented
by a circle the size of a participants’ fist, with two
miniature arms, legs and eyes. The critter’s behavior
changes depending on the situation. At first, the crit-
ter chases the participant around the screen. When
the critter catches the participant, it attempts to climb
to the top of their silhouette, after which it does a
little dance. Other critter actions include: chasing an
open hand, exploding when the participant captures
it, and dangling from an outstretched finger.

Digital Drawing: This interaction allows the par-
ticipant to draw on the video screen using his or her
finger. If there is more than one person in the envi-
ronment, each person is assigned a different color to
draw with. The user can clear the screen by opening
their hand and erase portions of drawing by “rub-
bing” two fingers held close together over part of the
drawing [Krueger 1993].

Hanging by a Thread: This is a interaction that al-
lows two users to interact with each other in a playful
environment. This interaction incorporates two of
Krueger’s environments: Videoplace and Videodesk.
Videodesk is very similar to Videoplace, the crucial
difference being that only the user’s hands and arms
are used to manipulate graphic objects, not the whole
body. In this interaction, the silhouette of the par-
ticipant in the Videoplace environment is displayed

Figure 3: Krueger’s Critter
[Kreuger 1993].

Figure 4: Krueger’s Digital
Drawing [Kreuger 1993].

Figure 5: Krueger’s Hanging
by a Thread [Kreuger 1993].

15

dangling on a string. The string is being held by the
hand of the participant of the Videodesk environ-
ment. The participant dangling on a thread can swing
back and forth by moving and leaning left and right.
The Videodesk participant can also affect the swing-
ing silhouette by moving their hand in rhythm to the
swaying.

Krueger’s Videoplace, though created over 20 years ago, is
still incredibly relevant. It is a testament to the strength of
the Videoplace’s system that art projects such as Camille
Utterback’s Text Rain are still impressing audiences. As an
initial exploration of a new interactive medium, its compre-
hensiveness is unparalleled.

Despite its importance to the history of interactive media,
there are a few shortcomings of Videoplace in relation to the
goals of this project. One of these is perhaps related to its
biggest strength: its comprehensiveness. While Videoplace
does identify a incredible number of interactions that can
be performed within the system, Krueger fails to organize a
taxonomy or a system for understanding these interactions.
Without such a system to help us understand this incred-
ible number of studies, it becomes difficult to suss out the
lessons learned the creation of this piece and how to build
upon it. As such, future interactive artists and designers are
doomed to repeat the mistakes Krueger made years ago.

Another shortcoming of the Videoplace system in relation to
this project is that it fails to demonstrate how these interac-
tions can be used in a game context. While this was not a
goal of the Videoplace system, it is an important distinction
to make. While many of the interactive studies Krueger
made are very playful in nature and fun to interact with,
there are no defined goals to allow for competitive play.

16

2.1.2. The Vivid Group’s Mandala Gesture Ex-
treme System

The Mandala Gesture Xtreme (GX) System, created in
1996, is possibly the most comprehensive computer vision
based gaming system available today. Created by the Vivid
Group, a Toronto based computer entertainment company,
the Mandala GX System is specifically designed for what
the company calls “location based entertainment facili-
ties,” [The Vivid Group 1996] or in other words, Muse-
ums, Science Centers, Halls of Fame and TV Productions.
The Mandala GX System consists of a 1.6 Ghz computer,
CCD Video Camera and cables, Nvidia Video card with TV
output, Video Capture board, PCI sound card and a license
to their custom Gesture Xtreme software. They also offer a
variety of lighting and chromakey installation solutions.

The Mandala GX System, as described on their web site, is
a virtual reality system that uses a video camera to place a
participant’s image into a variety of “fast action games and
virtual environments” [The Vivid Group 1996]. The instal-
lation setup is similar to the setup used in Krueger’s Video-
place. As in Videoplace, the user stands in front of a camera
which records their movement. The user’s image is com-

Figure 6: A user interacts
with the Mandala GX System
against a chromakey back-
ground [The Vivid Group
1996].

17

putationally separated from the background image, which
is then displayed in front of them with either a projector or
large screen television. Instead of a backlit plastic panel, a
chromakey background is used to isolate the user’s image.
In the Mandala GX System, the video image taken from the
background is a full color image of the user unlike Videopla-
ce, where the processed video image is a binarized version
of the user’s image. As in Videoplace, the user’s video image
is then placed in a variety of different virtual environments
that allow users to interact with various graphic objects.

The Vivid Group has created a large number of software
titles to run in its Mandala GX System. It has created five
entertainment titles, seven educational titles, nine sports
titles, and six “virtual theatre,” [The Vivid Group 1996]
or multiplayer games. I will quickly describe a few of the
games that are most relevant to the project so as to get
a better understanding of the types of experiences these
games provide and to be able to accurately critique them.

Sharkbait: This game allows the user to “swim”
around an underwater virtual environment. The ob-
ject of the game is to collect as many stars as possible.
While attempting to gather the sinking stars, the user
most also avoid creatures such as electric eels and
sharks that swim across the screen. The user is ap-
proximately one fifth the size of the playing area and
may move around the screen by either pointing up,

Figure 7: A user reaches out
to move in Vivid Group’s
Sharkbait [The Vivid Group
1996].

18

left or right, to go in the corresponding direction, or
by ducking to move down.

Full Court Slam: This game is a virtual reality full-
court basketball game. When on offense, the user
attempts to dribble a ball down the court against a
virtual opponent and shoot the ball in the basket.
As you do this, your opponent attempts to steal the
ball from you and block your shot. When on defense,
the user must attempt to steal the ball and block the
computer player’s shots.

Volleyball: This game is a virtual volleyball game.
The user attempts to continually hit a volleyball over

Figure 9: Two users play the
Vivid Group’s Volleyball [The
Vivid Group 1996].

Figure 8: A player dunks in
the Vivid Group’s Full Court
Slam [The Vivid Group
1996].

19

the net to a virtual robot opponent. The ball moves a
bit slower than real time, in order to make the game
easier to play. The direction the ball bounces off the
user is dependent upon the angle of the user’s edge at
the point of contact.

Snowboarding: This game is a virtual snowboarding
game, which can be played by up to four people. The
user’s travels down the slope of a mountain head-
first attempting to be the first to cross the finish line.
While boarding down the mountain, the user must
avoid obstacles such as trees, rocks and stumps and
attempt to fly off jumps. The user can lean left and
right to control the direction of movement, and squat
to control the speed at which he or she travels down
the mountain. The first user to the finish line wins.

The biggest strength of the Mandala GX System is that its
installation setup allows for a wide range of movement. The
camera is set far enough away from the user to provide the
computer with a large video image within which movement
can be detected. The games, for the most part, take advan-
tage of this by encouraging dramatic movement.

Another of the system’s strengths are the games’ graphics
and sounds. Each game places the user’s live video image
in a in a rich 3D graphical environment. A lot of attention

Figure 10: Two users play
the Vivid Group’s Snow-
boarding [The Vivid Group
1996].

20

has been given to the visual treatment of the graphic objects
with which the user interacts. One of the most impressive
of these environments is Sharkbait, where the user must
chase realistically rendered and animated dolphins around
the screen, while attempting to avoiding sharks that bite
and electric eels that shock. All of the action takes place in a
beautifully rendered underwater environment.

The system also has many extras that add to the overall
experience. Some of these extras include the user’s image
being “beamed” into each game environment, an easy to
use interface for choosing between games, and a high score
board that takes a victory photo of the player rather than
asking them to enter their name or initials.

Despite these strengths, there are quite a few aspects of the
system that could be improved upon. Most of these weak-
ness are related to the specifics of the of interactive experi-
ences the games provide. While these issues are crucial to
the lasting playability and entertainment value of the sys-
tem, they are probably not of primary concern to the cre-
ators of the system. Since this system was designed to exist
in a science center, museum or hall of fame type environ-
ment, where there is high traffic and few repeat users, issues
relating to the specifics of the interactions and playability of
the games come second to the ability of the system to im-
press audiences within a short period of time. However, the
issues of lasting playability are crucial to my project, and as
such, I will address them at some length.

Figure 11: The Mandala GX
System’s takes a screenshot
of the user for the high
score board [The Vivid
Group 1996].

21

The biggest weakness of the game experiences, which
quickly became apparent after watching a few first time us-
ers play, is that overall, the interactions are not very intui-
tive. There are a few reasons for this. One is due to the fact
that many of the games set up false interactive expectations.
Many of the games designed for the system are based on
popular real world games and sports such as basketball, vol-
leyball, soccer and snowboarding. While creating this type
of game makes sense when designing for first time users
(so that they don’t have to learn a different set of rules for
each new game), this strategy becomes less useful when the
actions involved in successfully playing the real world game
have little to do with the actions that are successful within
the video game.

This is most apparent in Mandala GX System’s basketball
game: Full Court Slam. In attempting to recreate the experi-
ence of playing basketball, the designers of Full Court Slam
came up with a vocabulary of interactions that attempted
to accurately match the real world actions of playing bas-
ketball. This resulted in a large vocabulary of game interac-
tions consisting of: jumping, dribbling, stealing, blocking,
shooting and dunking. While most of these interactions are
somewhat similar to their corresponding real world actions,
each one of them has significant differences that must be
learned. In many video games, learning of the specifics of
an interaction and perfecting its control can be a source of
pleasure. However, this learning becomes irksome in games
where there is a preexisting expectation of how the action
should be performed which doesn’t match the actual inter-
active experience.

Preexisting expectations of how an action should be per-
formed occur often in simulation based computer vision
games. This is because of a few reasons. In most computer
games, the input device of the game usually provides clues
to how the interaction should occur (e.g. if there are but-
tons, they probably should be pressed). As an input device,
a camera provides little information for the user about
how the actual interaction should occur. As such, all of the
user’s expectations of how the interaction should occur in
the game come from the game itself. In simulation games,
this expectation is based wholly on the real world game

22

experience. When this is combined with an input device
that allows for a natural and free range of motion, the user
naturally expects the game interaction to match the real
world interaction. Problems occur when this expectation is
not met.

Another problem with designing computer vision games
that attempt to keep the interactive experience as close to
the real world experience as possible, is that often certain
interactions don’t translate successfully across media. This
can be due a number of issues, such as: the translation of
3D interactions into 2D ones or the importance of tac-
tile and force feedback to the interaction. These issues of
translation are especially apparent in the dribble interaction
in Full Court Slam. In real world basketball, dribbling is
an essential interaction. Dribbling is a learned skill, whose
pleasures are closely related to control, movement in 3D
space and tactile feedback. When translated into a 2D com-
puter vision interaction, the dribbling interaction is stripped
of these essential features. Without the ability to dribble
around a defender or feel the force of the ball return into
your palm, the dribbling interaction is reduced to an awk-
ward necessary patting that takes away from the flow of the
game experience.

Another crucial problem with the games’ interactions are
that a large number of them map a real world action to a
different character action in the game world. This type of
interaction can be thought of as a “representational interac-
tion,” where one action stands for another. Because of the
difference between action and outcome in representational
interactions, they tend to be less intuitive. The user must
spend some time learning the specifics of how their real
world action corresponds to action in the game world. One
of the biggest advantages of computer vision technologies is
that it allows for a more direct type of interaction to occur.
This more direct type of interaction that can be thought of
a “literal interaction.” In a literal interaction, the user can
directly affect objects in the game world. As in virtual real-
ity, the participant in the real world actually becomes the
character in the video game. If the user wants to jump over
something, the user simply jumps, without having to worry
about the translation of their action into a character action.

Figure 12: A user dribbles
against a virtual opponent
in Full Court Slam [The Vivid
Group 1996].

23

Most of the games designed for the Mandala GX System
fail to take advantage of the potential of literal interactions
allowed by computer vision.

A good example of how the Mandala GX System uses repre-
sentational interaction is in its game Sharkbait. In Sharkbait,
as well as a number of its other games, the basic way the
user moves around the game environment is by pointing in
the direction the user wants to move. When the user points
up, the user floats to the upper part of the screen, when the
user points left, they float to the left side of the screen, and
when the user points right, they move to the right side of
the screen. To move downwards, the user ducks down low.
These interactions are representational interactions. The
gesture “point left” in the real world stands for a completely
different action in the game world: move left. As such there
is still a significant disconnect between action and outcome,
and as a result, a lack of direct control is felt.

2.1.3. Reality Fusion’s GameCam

One of the first commercially available products to use
video as input in a video game context was Reality Fusion’s
GameCam, released in October of 1999. The GameCam
bundle comes with a Logitech QuickCam PC video camera
and a software suite consisting of six different interactive
experiences that place to the user’s video image in various
interactive scenarios.

After connecting the webcam to your personal computer
and installing the software, the user stands in front of the
camera which displays the user’s video image in a game
context. All of the six experiences included in the software
suite are designed to allow interaction between graphic
objects and the user’s upper body.

Of the six titles that come in the bundle, four are games,
and two are playful interactive experiences. These six differ-
ent titles are briefly described below:

Figure 13: Reality Fusion’s
GameCam box [Reality Fu-
sion 1999].

24

Basketball: A one on one game where each user
tries to tap a basketball into the net on their side of
the screen. The physics of the basketball moves more
like a beach ball than a basketball.

Horse: A game similar to the schoolyard basketball
variety. Two to four people take turns shooting a ball
into a basket. If the user fails to make the shot the
previous player made, you receive a letter. When you
spell the word HORSE you are eliminated.

Karate: A game that where user spars with an ani-
mated virtual fighter. The user punches and kicks to
score points against a virtual opponent, which punch-
es and kicks back.

Figure 14: A user interacts
with Reality Fusion’s Basket-
ball. The user tries to bounce
the ball off their body into a
basket [Reality Fusion 1999].

Figure 15: A user fights a vir-
tual clown in Reality Fusion’s
Karate [Reality Fusion 1999].

25

Volleyball: A game which allows a user to play beach
volleyball against a virtual opponent.

JumpIn Video: An interactive experience that allows
users to create a “kaleidoscopic light show” to accom-
pany the music of your favorite CD.

Be There: An interactive experience that allows the
user to take pictures of their own faces superimposed
in funny places.

While the GameCam may be the first commercially avail-
able video game system to incorporate video as input, it
is not without its faults. The following review by ZDNet
articulates the experience of playing with the software, and
the conveys the general feeling one gets after reading a
number of product reviews.

“Well, perhaps fun is not exactly the right word. Amusing
might be more accurate. GameCam is an interesting idea
whose time has not yet come. First off, these games are
really just high-tech Pong when you get right down to it.
Technology has come a long way when you can use your
hands as the paddles in a game of Pong; but just being able
to do this does not mean that it has lasting value... Given
more powerful technology in the future and better applica-
tions to work with, GameCam could open new avenues for
gaming. For now, however, it is little more than a mildly
amusing diversion” [CNET Networks 2000].

This quote is most critical of the design of the game expe-
riences themselves, which is a common theme seen in the
reviews found on the Internet. Many users described the
experience of playing the games as interesting and excit-
ing at first, but that the novelty quickly wears off. As one
reviewer put it, the games are simply “amusing for a short
amount of time.” [Epinions 2000].

The other most common complaint about the system is
the inconsistency of the technology. One reviewer com-
mented, “it does not work well in rooms that are too bright
or too dark, and it will miss your movements if you move
too quickly” [CNET Networks 2000]. Another stated “the

26

images are full of static, and can be really slow-moving”
[ZMedia 2000]. Other reviewers complained that often
the interactions did not work as expected, and at times a
graphic object would float over their video image rather
than reflecting off of it.

Finally, a few reviewers commented on the fact that while
these games did provide a somewhat aerobic experience,
they felt the experience to be somewhat restrictive. The
games set up an expectation by the user that they could
freely move and jump around in the games, but the ac-
tual game experience requires that the user stay within the
frame of action. This frame of action is somewhat limited
do to the proximity the user needs to be to the screen in
order see the action. As one reviewer states: “(the games
don’t) let you interact properly without moving way back
from your desk, not easy in most spaces” [ZMedia 20000].

Besides all of its faults, the GameCam is a breakthrough
from a technological point of view. This is the reason why
most of the reviews of the software start out by pointing out
the potential of this type of interaction in gaming environ-
ments, and why most felt frustrated when it didn’t live up
to this potential. It is also very appropriate that on two
different occasions it was compared it to Pong. While both
Pong and the GameCam have a limited entertainment value
in terms of their staying power, they both show the poten-
tial of a medium to creating engaging interactive experi-
ences.

2.1.4. Intel’s Me2Cam Virtual Game System

The Me2Cam Virtual Game System developed by Intel as
part of its Intel PlayTM product line is very similar to
the GameCam system created by Reality Fusion. Like the
GameCam, the Me2Cam is a combination hardware and
software package that comes with a webcam and suite of
interactive experiences that use video as input. Intel also
released the Me2Cam in October of 1999. It is unclear
whether the Intel’s Me2Cam or the Reality Fusion’s Game-
Cam was the first to be released.

Figure 16: The box for Intel’s
Me2Cam Virtual Game Sys-
tem [D’Hooge 1999].

27

Just as with the GameCam, the user connects the Me2Cam
to their personal computer and installs the software in order
to play the games. Also like the GameCam, the all of the
interactive experiences in the software suite are restricted
to the user’s torso. The software suite consists of five differ-
ent interactive experiences: three games and two interactive
experiences. The five titles are briefly described below:

Bubble Mania: A game where the user, positioned
on the bottom of the screen, attempts to either reach
out and pop or avoid bubbles that float down from
the top of the screen. Whether the bubble should be
popped or avoided depends on the type of bubble
falling.

Club Tune: An interactive experience where a band
plays music in the background, while he user dances
in the foreground. The more the user dances, the
faster the band will play.

Pinball: A pinball game where in place of paddles
are copies of the user’s image. By moving around,
the user can affect how the ball reflects off of them.
The direction the ball bounces off the user is depen-

Figures 17 and 18: The
figure on the left shows a
Me2Cam’s Bubble Mania in
action. The figure on shows
a user playing with Club
Tune [D’Hooge 1999].

28

dent upon the angle of the user’s edge at the point of
contact.

Fun Zone: An interactive experience that allows the
user to see their live video image stretched, morphed
and generally just distorted in a variety of different
ways.

Snow Surfin’: A snowboard game which allows the
user to slide down a virtual mountain. By leaning left
and right the user can control the movement of the
snowboard as it travels down the mountain. The user
must avoid obstacles that reduce the user’s speed.

The Me2Cam and the GameCam are strikingly similar: they
both have approximately the same price, they both are a
combination webcam and software system, they both come
with a music based interactive experience, and they both
include an image manipulation based interaction. While
they seem identical, there are a few subtle differences. One
difference between the Me2Cam and the GameCam are its
target audiences. Intel’s GameCam is designed specifically
for children 4-8, unlike the GameCam, which attempts to
appeal to a wide audience. As such, the Me2Cam has no
fighting game, and its emphasis is more on the fun interac-
tive experiences rather than on the design of the games.

Another difference between the systems is that the Game-
Cam allows for multiple player games, while the Me2Cam is
restricted to single player action. Perhaps the most signifi-
cant difference, when reading its reviews, is the quality of
the technology. While there were complaints in the quality
of the video, as there were with the GameCam, there were
no complaints about the speed of the system. The following
review mentions this fact, as well as addresses the weakness
of the game’s design: “I didn’t think the picture quality
was the best, but it had close to true-time motion... no
one my age would play it after the novelty wore off. They
might, though, if the games were more complicated and the
software more sensitive to finer movements” [Able Minds
2000].

Figure 19: A user playing
Me2Cam’s Pinball [D’Hooge
1999].

Figure 20: A user interact-
ing with Me2Cam’s Fun Zone
[D’Hooge 1999].

Figure 21: A user playing
with Me2Cam’s Snow Surfin’
[D’Hooge 1999].

29

Also, like the GameCam, many users of the Me2Cam com-
plained of feeling restrained by limited by the range of mo-
tion the webcam captures. One user states, “Unfortunately,
the movements that can be made in the game are somewhat
restrictive. You cannot move outside the boundaries of the
camera’s view without interfering with the feel and flow of
the program” [Berger 2000].

Aside from a few technological advantages, the Me2Cam
adds little to the medium of video as input based games
that was not already explored by Reality Fusion. The
reviews of these two systems are in most cases interchange-
able, and as such, reinforce the valuable lessons for the
future design of camera based games I’ve identified in my
critiques.

2.2. Advantages of Using Computer
Vision in Video Games

While researching the projects described earlier, I compiled
a list of five important advantages of using computer vision
in video games over more traditional interfaces. This list
was formed partially from the successes of the games and
interactions I researched, and partially from the potentials
I saw unfulfilled. I created this list to have as a reference to
help guide the creation of my own computer vision interac-
tions and games.

1) Athletic Activity

One advantage of using computer vision in video
games is its ability to provide athletic gaming experi-
ences. Since the only input device is a video camera,
the user is not restricted by wires, or wearable or held
devices. This encourages a more natural, unencum-
bered interactive experience, perfect for allowing for
more athletic and physical activity. Only recently, with

30

the creation of games such as Dance Dance Revolution,
Para Para Paradise, and Police 24/7, has the gaming
industry begun to explore the potentials of athletic
interaction. Even so, these physically orientated
games are almost all dance based games, and are
fairly limited in terms of the type of interactions they
recognize. The lack of exploration of athletic action in
video gaming beyond dance based games is extremely
puzzling when considering the natural human ten-
dency to associate athletic activity with competition.

2) More Expressive / Performative Interactions

Unlike most video games, where the players’ physical
performance is limited to discrete button presses and
joystick taps, video capture allows for a continuous
interactive experience with a large range of expres-
sion. This is range of expression is due to the inter-
active bandwidth that video capture provides when
compared to more traditional gaming interfaces. The
amount of information that passes from user to com-
puter per second is significantly higher. This facilitates
a different type of interactive experience, one which
accentuates the players’ differences in personality and
allows for more creative expression.

3) Closer Interactive Mappings

As I discussed in section 2.1.2., in almost all video
games, there is a mapping of the player’s physical
real world action to a character action that happens
inside the virtual game world. This mapping creates
a gap between physical action and virtual outcome
that must be learned. This mapping is almost always
accompanied by a translation of scale and position.
With computer vision games, this mapping between
the real and virtual is greatly diminished, which al-
lows users to interact game objects more intuitive and
naturally, and in relation to their body. This can be
thought of a “literal interaction”, in contrast to the

31

“symbolic interactions” that usually take place on a
computer. Because of this, in computer vision games,
one will rarely ever find a user taking their eyes off of
the action on the screen. At no point does the user
miss a button, drop a controller or look where a but-
ton is on a keypad.

4) Use of the Whole Body

Using the video camera as an input device allows
an enormous amount of flexibility in terms of the
type of physical action that can be interpreted. Most
traditional gaming input devices, such as controllers,
joysticks, and foot pads are designed for a specific
part of the body and is accompanied by a precon-
ceived idea of how that action is to be executed. Since
computer vision can recognize the user’s whole body
as an input device, the game designer has much more
flexibility in terms of the type of interaction they want
to occur. Extremely different interactive experiences
can be designed without the need for an entirely new
input device.

5) Large Vocabulary of Actions / Creative Solutions

Perhaps the most important advantage of computer
vision games is that their interactive vocabulary is
not as limited to a small predefined set of actions.
The only limitation of action is that which can be
performed by the human body and be recognized by
the computer. If utilized effectively in a game context,
this larger vocabulary of possible action can allow the
user more creativity to come up with different inter-
active solutions to game problems. While allowing
such interactive flexibility in a video game context is
not an easy task, when accomplished it can be very
powerful.

32

3. Methodology

 This chapter is divided into three sections. The first section,
Initial Interests, explains the initial interests that guided my
thought process in realizing a final project. The second sec-
tion, Abstracting Action, explains the thought behind and the
imagined form of the project as it was defined in late 2002,
as well as how and why it evolved to its final form. The third
section, Unencumbered Full Body Interaction, describes the
final project. The section begins by presenting the project’s
goals, as well as the design process which guided its imple-
mentation. The technical setup is then addressed, from the
specifics of the installation, to a description of the computer
vision algorithms used. After this, a basic vocabulary of
computer vision interactions is identified. This is followed
descriptions of the game interactions that were created
from this basic vocabulary. Finally, a series of game studies,
or “gamelets,” are presented to show how these interactions
can be used in a game context.

3.1. Initial Interests

My interest in computer and video gaming is fueled by an
intuitive feeling that there are enormous potentials in the
field that have been left unexplored, especially in the field
of interaction. Though the gaming industry is often touted
as being on the forefront of experimentation in technology
and computing, this claim really only applies when consid-
ering animation and graphics. If we look at the evolution
of video gaming since its beginnings in the 1960’s from the
perspective of interaction, the lack of innovation is striking.
When one compares the controllers of today to the control-
lers of 30 years ago, the only difference is more buttons and
joysticks. This realization inspired me to investigate the pro-
cess of creating interactions in games. Perhaps this would
lead me to discover new interactive possibilities, or at the
very least, discover an explanation for the industry’s lack of

33

experimentation in the field.

When looking at the multi-billion industry gaming is today,
where it can easily take a team of 50 designers, program-
mers, artists and musicians to produce a commercially
successful console game, one can quickly lose sight of what
gaming is about. In order to concentrate on the basic issues
of interaction involved in creating video games, I decided
to examine the history of video games from its very begin-
nings, back when games consisted of knobs, dots and blips
rather than 3D characters, in depth narratives and multiple
soundtracks.

In looking back at the earliest video games, it quickly be-
comes obvious that all of these games were simply simula-
tions of natural, physical phenomenon which allowed user
interaction. The first two games ever created (Tennis for
Two at Brookhaven Nation Laboratories [Burnham 2000]
and Spacewar at M.I.T. [Burnham 2000]) were developed
at large research centers. Both started out as simply simu-
lations of objects moving in space, and both added user
interaction in order to make the experience more engaging
for novice users.

However, since the computational and interactive pos-
sibilities of these early machines were limited, these early
game designers had to selectively choose what aspects of
the action to allow the user to control. These decisions had
an enormous effect on the user’s experience of the simula-
tion. For example, though Pong and Tennis for Two were both
simulations of the game tennis and both were created with
extremely limited computational power and interactive pos-
sibilities, the experience of these two games are quite differ-
ent. These differences arose from the decisions the designer
made about what aspects of real world tennis to simulate,
both visually and interactively. Tennis for Two simulated
tennis from a side view and allowed the user to control not
only when to block the ball back (with a button), but also
the angle of the racket (with a knob). Pong, on the other
hand, simulated tennis from a top down view, and repre-
sented the tennis player with a vertical line. The user was
allowed to control the position of the vertical line along one
axis in order to block the tennis ball back to the opponent’s

Figure 22: The oscilloscope
from Tennis for Two [Hunter
2000].

Figure 23: A screenshot of
Atari’s classic Pong [Hunter
2000].

34

side of the court (with a knob or slider).

The effect of the game designer’s choices about what ac-
tions and what aspects of action to represent in a video
game experience seemed to be one of the most essential
aspects in the creation of a video game. This discovery
encouraged me to further explore the concept of translat-
ing interactive experiences across media, which lead me to
think about the concept of “abstracting action.”

3.2. Abstracting Action

As I claimed previously, all of the earliest video games
could be seen as interactive simulations of physical phe-
nomena. In fact, all games can be considered simulations
[Salen and Zimmerman 2003] in that they all borrow their
ideas of interaction and play from the real world. The game
designer’s challenge is to effectively translate engaging game
interactions from the real world into the digital. Because
this translation is necessarily a translation from a more ex-
pressive medium to a less expressive one, the game designer
must selectively choose what actions to represent and what
to leave out. This process of reducing an experience down
to its essential interactions can be seen as a process of ab-
straction.

This process of abstraction is also intimately related to the
input device the game designer is designing for. The fewer
actions an input device can understand, the more abstract
and symbolic the representation of action must be. Con-
versely, the more actions an input device allows, the more
potential there is for a literal translation of action. The
number of actions an input device can recognize can be
thought of as its “interactive bandwidth.”

Interactive bandwidth can be seen as a measure of the
amount of information passing between the user and the
computer. Factors that go into computing an input device’s
interactive bandwidth are whether the interaction is con-
tinuous or discrete, the update rate, the number of degrees

35

of freedom, and the number of bits per degree of freedom.
Investigating these variables can give us a good idea of the
interactive bandwidth of a particular input device, and its
potential for allowing literal translations of action.

Thus we can understand all interactions as existing on a
continuum corresponding to both their level of abstrac-
tion and interactive bandwidth. A representation of this
continuum can be see in the Figure 24. The left side of the
diagram represent interactive experiences that have a more
literal translation of action and have a higher interactive
bandwidth. The right side of the diagram represents games
that have a more abstract or symbolic translation of action
and a lower interactive bandwidth. On this diagram, I have
placed three different digital versions of ping pong. The
game on the left side of the continuum has the most literal
representation of action, real world ping pong. The game on
the right side of the diagram has the most abstract transla-
tion of action, where the actions of ping pong are abstracted
into one slider that the user vertically scrolls up and down.

I envisioned my thesis to be an exploration of the space this
continuum maps, in order to better understand the cre-
ation of game interactions. In order to effectively study this
process of translation, I came up with a series of questions
I thought a successful thesis addressing this topic would
cover: When a video game designer is creating an game
based on a real world game, what aspects of the physical
actions involved are represented and what are left out? How
are these actions controlled by the user physically? To what

Figure 24: This diagram
organizes game interac-
tions on a continuum from
literal translation of action
to abstract translation of
action. Three versions of
ping pong are placed on
this continuum: real world
ping pong, Table Tennis by
shockplay.com and Atari’s
Pong.

36

extent does the user have control over these actions? How
are these decisions made? How do these decisions affect the
design of the rest of the video game experience? How do
these decisions affect the user’s experience of the game?

3.2.1. Case Studies

Before I set out to design a project that would address these
questions, I first decided to explore how game designers
have traditionally translated physical actions from the real
world into game interactions. To do this, I conducted a
study of real world games that have been translated into
video games in a variety of different ways.

In video gaming’s short history, there have been a handful
of real world games that have translated well to the digi-
tal realm. Since these digital games have proved generally
successful from a game play perspective, they have become
popular testing grounds for experimenting with new tech-
nologies. As a result, a game such as ping pong has dozens
of digital counterparts, each providing a drastically differ-
ent experience, and in some cases, interactive possibilities.
Studying these games from a purely interactive perspective
allowed me to look at different existing strategies for trans-
lating real world actions into video game actions and how
these decisions affect the experience of that game.

The two actions games I chose to study were ping pong
and paintball. I chose these games because both games are
reliant on the pleasures of coordination of movement and
sport, and both game have multiple digital counterparts
that provide a wide range of interactive alternatives. In
order to understand how each game translated its interac-
tive experience from the real world to the digital, I first
established a vocabulary of physical actions that made up
each real world game experience. While this process was not
an exact science, it did give me a general idea of the crucial
actions involved each game, and what actions would make
sense to represent in a video game simulating that experi-
ence. For each game I came up with a list of general de-
scriptions of the actions involved such as: move, look, shoot,
dodge, and swing. I then broke these actions down to more

37

specific actions that could potentially be represented by a
human computer interaction.

The first game I looked was ping pong. I chose five differ-
ent versions of digital ping pong to study, each of which
provided a significantly different interactive experience.
The versions I chose to look at were: Haptic Battle Pong by
Dan Morris and Neel Yoshi which uses the phantom hap-
tic mouse as an input device, PlayTV Ping Pong by Radica
Games which uses a paddle fitted with sensors, TableTen-
nis by shockplay.com which uses the mouse, 3D Pong by
albinoblacksheep.com which also uses the mouse, and the
classic Pong by Atari which uses either a slider or a dial.

To investigate how each video game recreated the experi-
ence of ping pong, I first identified what I thought to be the
essential vocabulary of actions that make up the experience
of real world ping pong: moving, swinging and looking. I
then broke these actions down into more specific actions
and identified which of these real world actions are rep-

Figure 25: This diagram
compares various versions
of digital ping pong.

38

resented in each digital version. I then created a chart to
compare the games’ interactive experiences. The horizontal
axis lists the five digital versions of ping pong I chose to
investigate, while the vertical axis lists the specific actions
I identified as the interactive vocabulary of ping pong. The
chart identifies which of the list of possible actions each
digital version represents. It also identifies whether the con-
trol provided for each action was discrete, continuous, or a
continuous within a limited range.

I also looked at the game paintball. I purposely decided to
employ a fairly broad definition of the game in my search
for digital versions. Though at first glance it might seem
inappropriate to consider a game like Tank (a game where
the user are maneuvers a tank around a battlefield in order
to shoot an enemy tank and avoid being shot) a version
of paintball, if examined closely, it is essentially the same
game. In both paintball and Tank, the user is a character

Figure 26: This diagram
compares various versions
of digital paintball.

39

that moves around a given world with various obstacles,
where the goal is to shoot other characters while attempting
to avoid being shot. The only difference is the representa-
tion of the character and the environment in which it takes
place.

The versions of paintball that I included in my study are:
Police 911 by Konami, an arcade game where the user uses
a laser gun to shoot enemies and physically move to dodge
enemy fire, Quake III by Id Software, a game where the
user explores a 3D space inhabited by aliens in the first
person with a keyboard or controller, Wolfenstein 3D by Id
Software, a game similar to Quake except with a more lim-
ited vocabulary of actions, Berzerk by Stern, where a char-
acter explores a simple two dimensional world viewed from
above, and Tank by Kee Games, a game similar to Berzerk,
except the user are controls an tank rather than a person. I
identified the essential actions to the game of paintball as
moving, shooting, dodging and looking (see diagram).

While these studies proved useful in gaining a better un-
derstanding of the different interactive possibilities when
translating real world game actions into game interactions,
it was difficult to gain any further understanding of how
these different translations of action affected the experi-
ence of the game without conducting a user study of these
games. However, since my interest lies more in the design
of games and the creation of interactions than the study of
their psychological effect, this investigation just strength-
ened my urge to attempt to formulate a design project, so I
could study the actual creation of games and game interac-
tions, rather than just study their effects.

3.2.2. Initial Project Proposal

 In order to study the process of translating physical actions
from the real world to the digital first hand, I decided to fo-
cus on a simple real world game whose pleasures are closely
tied to coordination and accuracy of movement. I decided
to create a series of digital games that were all based on the
same real world game, but whose interactions were drasti-
cally different. In such a way, I would be able to compare

40

the different games not only from the perspective of the
user, but from the perspective of game designer as well.

The game I chose to study was dodgeball. I chose dodge-
ball because its rules are simple and easy to learn, and more
importantly, the pleasures of the game are derived primarily
from athletic activity: dodging, catching and throwing. In
order to focus the study even further, I decided to concen-
trate on just one of dodgeball’s essential interactions, the
act of dodging.

I decided on creating three different digital dodging games,
each of which translated the real world act of dodging into
game interactions differently. Ideally, one game would have
a fairly abstract translation of action, one would have a
more representational translation of action, and one would
have a literal translation of action. For example, if I were
conducting this study for a ping pong game, I would hope
to create a series of games similar to the ones used in the
diagram previously mentioned: Pong (abstract), Table Tennis
(representational), and PlayTV Ping Pong (literal).

I decided to keep the initial game concept as simple as pos-
sible, so as to be able to concentrate on the actual interac-
tive experience. The initial game concept I came up with
was called Duck and Jump. The game starts with a character
positioned on the right side of a screen. When the game
starts, blocks of varying size and speed introduced at the
left side of the screen would scroll horizontally at the char-
acter. The blocks would scroll at differing heights. Some
blocks would approach the user’s head, while others would
scroll towards their feet. The goal of the game would be
simply for the user to avoid the blocks scrolling at them by
ducking, jumping, lying down, stepping over, or whatever
action is most appropriate.

The three different interactive scenarios for the Duck and
Jump games can be seen in Figure 26. The game with the
most abstract translation of action would allow the user
to control the character in the game with just a keyboard.
There would be keys available to perform each of the fol-
lowing actions: move forward (left on the screen), move
back (right on the screen), jump, duck and lie down.

41

The second game, with a more representation translation of
action, would allow the user to control the game character
by using the mouse and the keyboard combined. The action
mappings would be similar to the previous game, except for
the fact that all the ducking and jumping would be con-
trolled by the mouse. The user could duck by clicking the
mouse to establish a starting position and then drag down
to make the user duck. The further down the user dragged
from the initial starting point, the further the character
would crouch down. To make the character jump, the user
could simply let go of the mouse while the character in the
game was in a crouching position. The further crouched the
character was when the button was released, the higher the
user would jump. In this way, the user could have continu-
ous control over the height the game character actually
ducked and jumped, which could cut down on recovery
time, but would perhaps be more difficult to master.

The final game, with the most literal translation of action,
would allow the user to actually become the character in
the game. By using computer vision and a setup similar to
Krueger’s Videoplace, where a camera recorded the user’s
image which was processed and then projected in front of
them. In such a way, the user would jump over blocks and
duck under them by actually physically ducking and jump-
ing.

I envisioned a few different experiments to conduct after I
finished the creation of these three different digital dodging
games. The first experiment would simply be a comparison

Figure 27: This diagram
shows the three different
versions of Duck and Jump
envisioned places on the
continuum.

42

of the user experience of each game. I would have a user
play each game and describe in detail the interactive expe-
rience of each. I would then analyze these results and see
if the user reactions could be generalized along the con-
tinuum of representation of action I established earlier. The
second experiment would entail the creation of a final ver-
sion of the game which would allow two users to simultane-
ously compete against each other using different interactive
methods. I thought that this model might provide different
insights and perhaps provoke interesting questions about
the effect the different interactions have on the game expe-
rience. The last of these experiments would be to develop
each game further separately. I envisioned that the decisions
about how to make each game more engaging would differ
based on each game’s interactive experience. I hoped that
this process might help me develop some general rules for
the creation of engaging video games based on the type of
interactive experience one is designing for: abstract, repre-
sentation or literal.

3.2.3. Initial Prototypes

3.2.3.1. Prototype I

The first of these three games I decided to prototype was
the Duck and Jump game with the most literal translation of
action: the computer vision based game. I prototyped this
game first for a few reasons. In order for my study to be a
useful one, each game must be somewhat engaging, and be
able to hold a user’s attention. The computer vision based
game was by far the most original interaction of the three
games, and as such, the most unpredictable in terms of its
game experience. I wanted to be sure that this interaction
could hold a user’s attention. Also, this game would be by
far the most challenging to create. Because of this fact, I
needed to establish early on whether on not the time mak-
ing this game was going to be well spent.

In order to test if this game would be successful or not,
I came up with an experiment that would let me test the
essential interaction of the game without actually creating
it. This experiment was conducted with a projector and

43

computer. The object was basically to see how fun it would
be to jump over projected animated graphic blocks.

A projector was placed approximately 20 or so feet away
from a blank white wall, pointed directly at it. The height
of the projected image was adjusted so that the image was
a foot or so taller than the average person. The projec-
tor was positioned so that the bottom of the projected
image aligned flush with the bottom of the wall. A short
looped Flash animation was then played on the projector.
The animation consisted of blocks that repeatedly scrolled
horizontally across the screen, from left to right. The blocks
were made so that their projected size was approximately
one foot by one foot. The scrolling blocks appeared at two
different heights, one that would animate across the bottom
of the projected image, and one would animate across the
projected image four to five feet up from the floor.

After this was set up, I started the animation and positioned
myself in the far right side of the projected image. As the
blocks scrolled towards me, I attempted to avoid the blocks.
I jumped over the blocks scrolling towards my feet, and
ducked under those that were approaching my head. I re-
peated this a few times with the blocks scrolling at different
speeds. After finding an appropriate speed, I set up a cam-
era and videotaped myself jumping over and ducking under

Figure 28: A frame of the
movie produced during the
creation of the prototype for
the computer vision version
of Duck and Jump.

44

the blocks. I did this so I could analyze the experience later,
as well as to be able to quickly and effectively communicate
my idea to others. While the exact setup of the prototype
does not exactly match the installation setup I envisioned
for the final game (where the game action is projected in
front of them) the interaction was the same.

As an initial prototype, this experiment was extremely
successful. Even though the blocks appeared in a regular
pattern, and there was no detection of contact when a block
hit the user, simply the interaction of ducking and jumping
in time with the animated blocks proved to be quite engag-
ing. As an interactive experience, it showed a large potential
for use in a video game context.

The creation of this prototype proved to be quite an excit-
ing and important step forward in the development of the
project. It was my first realization of the potentials for using
full body interaction in video games. After the creation of
this prototype I found myself constantly thinking about
other potential ideas for full-body computer vision based
games.

3.2.3.2. Prototype II

After the first prototype, I decided to create a prototype for
the version of Duck and Jump with the most abstract trans-
lation of action: the keyboard based game. Grabbing stills

Figure 29: A screenshot from
the second Duck and Jump
prototype. The game char-
acter is shown in mid-jump.

45

from the movie made in the creation of the first prototype
and tracing over them, I made jumping and ducking se-
quences in order to create a realistic moving animated char-
acter for the game. Using Macromedia Director, I allowed
the user to play these animated sequences depending on the
button pressed. When the user pressed the spacebar, a char-
acter located on the right side of the screen would jump,
when the “d” key was struck, the character would duck.

The final iteration of the prototype existed as an online
shockwave game. When the user pressed start, blocks, intro-
duced at random intervals, would scroll across the screen.
As in the first prototype, the blocks would either scroll
across the screen at the user’s head or at their feet. The
game would continue indefinitely as long as the user could
successfully avoid all the blocks, by jumping and ducking
appropriately. The game would end after a given amount of
blocks were detected to have touched the game character.

This prototype, while successfully in providing a somewhat
engaging experience, proved to be quite a bland exercise
in game translation compared to potentials revealed in the
creation and testing of the previous prototype. As a result of
this, I began become more and more focused on the issues
related to the first prototype, and the development of com-
puter vision based games and interactions.

3.2.4. Project Reformulation

After the completion of these two prototypes and the first
semester presentation, I began to critically reevaluate my
initial project proposal: an exploration of various methods
of abstracting action in the creation of game interactions.
While I believed this concept was based on a strong set
of assumptions that could potentially provide a valuable
framework for understanding video game interactions, I
wasn’t sure the scope of the proposed products was com-
prehensive enough to be useful in supporting my claims.

 The project’s main weakness was the Duck and Jump game
that was conceived to have an interaction based on a rep-
resentational translation of action. While the proposed

46

abstract and literal versions of Duck and Jump were both
appropriate, the mouse and keyboard based game envi-
sioned for the representational version fell far too close to
the abstract side of the continuum. To create a game with
a more “representational” interactive experience, I would
most likely have had to create my own input device that
could somehow approximate ducking and jumping actions.
However, when considering my strengths, interests, and the
scope of the project, learning how to create such a device
seemed inappropriate. As such, this weakness in the project
as currently proposed was unavoidable.

The combination of this critical evaluation of my project
with the success of the first prototype, motivated me to shift
the project’s focus. I decided to take a more design based
and exploratory approach. Because of the success of the
first prototype, I decided to continue with the implemen-
tation of the computer vision based Duck and Jump game
while at the same time, encouraging thought about other
possible computer vision based games and interactions.
This approach proved successful and lead to a complete
reformulation of the project.

3.3. Unencumbered Full Body Inter-
action

3.3.1. Project Goals and Design Process

After my initial frustration with the mismatch between the
concept behind my first semester’s project and the project
itself, I decided to take a more open ended approach to
the project, one which would be motivated and driven by
design, production and intuition. I imagined that a clear
concept could be arrived through a process of building
and critical evaluation, rather than just research. Instead
of having a clearly articulated concept and attempting to
create a project that fit to that concept, I decided to follow
my intuition and simply explore what appealed to me most

47

from my first semester’s project: the potentials of computer
vision based interaction in games.

While my production process did proceed somewhat intui-
tively and without a clear idea of what my exact goals were,
my intuition was informed by the research I had done from
first semester concerning game interactions, the research
I had done into Krueger’s Videoplace and the experience
of playing the Vivid Group’s Mandala GX System. Because
my intuition was based on a fair amount of knowledge
about previous projects that attempted to create playful
computer vision based experiences, my process followed
a fairly straight path. Though I often wasn’t directly con-
scious of the many decisions I was making while creating
these interactions, these decisions were all informed by this
knowledge.

This following section, which discusses the design goals, de-
sign process and the self applied constraints of the project,
can be seen as an attempt to explain the reasons behind the
intuitive decisions that drove my design process. Although
the topics addressed in the following section were not all
fully articulated until after the creation of my interactions
were complete, it does not mean that they were arbitrary or
were inconsequential to the design process. These goals and
constraints that follow were simply brought out and made
more clear by the creative process itself.

3.3.1.1. Design Goals

As I stated previously, these design goals were formulated
during my production and design process. The follow-
ing design goals were created as result of investigating the
intuitive decisions I was making during production and
responding to its successes and failures.

 1) Develop an interactive vocabulary to aid in the
creation of simple and engaging computer vision
based games.

48

 2) Create interactions that are simple and intuitive
to understand.

 3) Create interactions that encourage creative, ath-
letic and expressive movement.

 4) Create interactions that encourage the use of the
entire body.

 5) Make a series of gamelets that show how these
interactions can be used in a game context.

These goals were articulated at different points of the
design process. Goals #2, #3, and #4 were defined fairly
early on in the design process, after the advantages of us-
ing computer vision in gaming were identified. Goal #1
was identified as a general vocabulary of interactions was
naturally formed through experimentation. Goal #5 was
arrived at last. I wanted to be able to show how each of
the interactions I created could be used in a game context.
However, due to the number of interactions, creating a
complete game to contextualize each interaction was un-
realistic. Thus, I decided to create a series of “gamelets” to
demonstrate their potential. These “gamelets” would not be
fully realized games, but would simply place the interaction
in a competitive context. These “gamelets” can simply be
thought as one level of a game created to demonstrate the
game’s essential interaction.

If all of these goals were met, this project would be a suc-
cess. The larger the vocabulary of interactions, and the
more gamelets I could create to contextualize these interac-
tions, the more useful my project would be to future game
developers attempting to create computer vision games.

3.3.1.2. Design Process

Based on these design goals, I developed a process for the
creation of these interactions and their contextualization.
Though this design process was articulated after the cre-

49

ation of the project’s design goals, this process accurately
describes the intuitive process that drove the creation of the
developed computer vision interactions and gamelets. The
process is as follows:

 1) Create a simple and intuitive computer vision
based interaction.

 2) Make sure it generalizes to the whole body. That
is, make sure it is general enough a rule that it makes
sense to be initiated by not only a user’s head and
hands, but also foot or any other part of the body.

 3) Place the interaction in a game context that
encourages creative use of the body to initiate the
interaction.

Though all the interactions and gamelets did follow this
general process, some interactions were more successful at
being placed in a game contexts that encourage the use of
the whole body than others.

3.3.1.3. Self Applied Constraints

In creating interactions that would effectively satisfy the
goals identified previously, some self applied constraints
were applied to the design of these interactions. These
constraints were created to simplify the large task at hand
as well as to concentrate the energy on the most important
design decisions in relation to this project. Limiting the
amount of design decisions needed to be made is an effec-
tive way to do this.

The first of these constraints was on the interactions them-
selves. In order to create interactions that were as intuitive
and natural as possible, I focused my studies on the differ-
ent types of action that can take place at the boundaries
of the player’s silhouette and graphic objects. Though it

50

might seem the case, this is not the only type of computer
vision interaction computationally possible. An example
of another type of interaction can be seen in the Mandala
GX System game Sharkbait. In this game, the user controls
their movement on the screen by pointing in the direc-
tion they want to move. While such an interaction seems
simple enough, it is still an interaction that must be learned
through experience. It is my claim that there is a huge
potential for computer vision games that don’t need to use
this kind of interaction, but instead rely on a more direct
method of interaction, where users simply touch graphic
objects to affect their movement.

The main reason this type of interaction is most intuitive
and easy to understand is because physically touching a
given object in order to affect its action is the most com-
mon way we interact with objects in the real world. While
the difference between touching a block and pointing in
a given direction might not seem very different in terms
of learnability, such subtle differences should not be over-
looked in interaction design. The difference between direct-
ly touching a block to affect its movement, and pointing in
a given direction to move that way is the difference between
a literal interaction and a symbolic one. Why use a more
complex interaction when a simpler one can be used just as
effectively?

The other self applied constraint concerned the visual treat-
ment of the interactive experiences I created. In order to
focus on the interactions happening, I decided to restrict
my visual language to user’s binarized silhouette, colored
blocks, balls and lines. By creating this constraint, I force
both me as the designer as well as the user to focus on the
types of action occurring, rather than being distracted by
the visual treatment of the graphic objects, or the user’s
video image. This constraint was inspired by Krueger’s Vid-
eoplace, which employs a similar visual language.

51

3.3.2. Technical Configuration

3.2.2.1. Envisioned Installation Setup

The first step I took in the creation of the Duck and Jump
game, my initial objective, was to design the setup of a
system that would allow me to test my computer vision
interactions. The arrangement for this setup was inspired
by Kreuger’s Videoplace. As in Videoplace, I envisioned a
scenario where the user would stand in front of a video
camera and a display screen of some kind. The video image
captured by the camera would be fed to a computer which
would process the image and subtract the background, leav-
ing just the user’s silhouette. This silhouette would then
be projected in front of the user creating a sort of “magic
mirror,” where the user could perceive their own video im-
age moving in real-time. With this setup, I could then go
about defining various relationships between the graphic
objects and the user’s silhouettes, like Duck and Jump’s es-
sential interaction: detecting when a graphic block touches
a participant’s silhouette.

Figure 30: A sketch of the
envisioned interactive
setup. As in Videoplace, the
user stands in front of a
camera which captures their
live image. This video data
is then processed, and the
user’s silhouette is extract-
ed. The user’s silhouette and
graphic objects with which
they can interact are then
projected in front of them.

52

3.2.2.2. Video Processing

To create such a system, I faced a number of challenges.
The first of these challenges was simply to get a live video
stream into my computer to be processed. After doing some
research into some webcams and other types of cameras,
I decided upon using an analog VHS camera. I chose to
use an analog camera because of the speed of transfer
that component video allows when compared to USB and
other computer interfaces. To feed the video into my PC,
I purchased a Hauppauge WinTV card, a card specifically
designed to allow video image capture using component
video. This setup fed live video into my computer at a rate
faster than 30 frames a second, fast enough for Duck and
Jump.

The next challenge was to find a tool that would allow me
to capture live video and process it in real-time. I investigat-
ed a few options. The first options I looked at were Mac-
romedia Director extras that facilitated video capture. The
two available options I found were Danny Rozin’s Track
Them Colors and Josh Nimoy’s WebCamXtra. While these
options both captured live video and allowed for object
tracking, they both had fairly slow frame rates even with-
out introducing animation, collision detection or advanced
image processing algorithms. Because a high frame rate was
crucial to being able to recognize a user’s jump, and thus
the success of Duck and Jump, these options were elimi-
nated.

I also researched video libraries for Max, a graphical pro-
gramming environment for music and media applications
for the Macintosh. These libraries consisted of Jitter,
NATO and softVNS. In order for these options to achieve
an acceptable frame rate, I would need high end Macin-
tosh computers. Even so, introducing collision detection
and other image processing algorithms would most likely
slow the frame rate down to unacceptable levels. Also, the
Max programming environment was not designed for the
creation of large scale applications such as video games.
The organization of such a large program in a graphical
programming environment would prove tremendously time
consuming.

53

In order to achieve a high enough frame rate and be able
to program in an environment suited to the production of
large scale applications, I decided to use C++, and Intel’s
open source computer vision library, OpenCV. OpenCV
is a library created to assist in the creation real-time com-
puter vision applications. It provides optimized code to
assist developers working in many areas of computer vision
including: Human-Computer Interaction, Object Identifi-
cation, Segmentation and Recognition, Face Recognition,
Gesture Recognition, Motion Tracking, and Motion Un-
derstanding; Structure From Motion, and Mobile Robotics.
Using OpenCV’s functions related to Segmentation and
Recognition to create a background subtraction algorithm
would allowed me to separate the user’s silhouette from the
background.

In order to use OpenCV’s image processing and computer
vision functions, I needed to be able to access the video
data that was constantly being updated from the live video
provided by the camera. To do this, I used Video for Win-
dows, a set of functions provided by Microsoft to enable an
application to process video data.

The last component in the system’s pipeline was the output
of the video image and graphic objects. To do this, I used
OpenGL, a comprehensive and robust graphics library for
C++. OpenGL is one of the most powerful libraries for the
creation of rich real-time 2D and 3D graphics. This would
allow me a tremendous amount of flexibility, power and
speed in the creation and animation of the graphic objects
with which my users would interact.

After the underlying structure of this pipeline was complete,
I performed some simple tests in order to make sure the
frame rate was acceptable for recognizing a user’s jump, the
essential interaction in my Duck and Jump game. I discov-
ered, to my surprise, that the frame rate was not acceptable,
and that a large amount of frames were being dropped.
After some investigation, I realized that the graphics card
that was installed with my computer was not OpenGL ac-
celerated, which greatly decreased the performance. After
purchasing and installing an OpenGL accelerated GeForce
Ti 4200 graphics card into my computer, the frame rate
rose to an acceptable rate.

54

3.2.2.3. Background Subtraction

The last large technological hurdle I had to overcome be-
fore I could start creating computer vision interactions was
the development of the background subtraction algorithm
to apply to the live video image data. This background
subtraction algorithm would, ideally, allow me to separate
the pixels that make up the background from the pixels that
make up the user’s image. I could then use the user’s image
pixel data in a collision detection algorithm to detect when
a user came into contact with a graphic object.

The background subtraction algorithm I developed is fairly
simple and straightforward. As such, the algorithm only
works effectively in ideal lighting conditions. However since
the final manifestation of this project will exist as an in-
stallation space with controlled lighting conditions and an
established background, such an algorithm is sufficient. The
development of optimal background subtraction routines
is in itself a large field of research within computer vision.
Since this is not the subject of my thesis, I decided to de-
vote my time to the creation and investigation of computer
vision interactions rather than the development of a robust
background subtraction algorithm. If the project needs to
exist in an environment with unpredictable lighting con-
ditions or an inconsistent background, alterations to the
algorithm can easily be made.

The background subtraction algorithm works by taking first
taking an average of the pixels in the first 100 frames. This
is done to create an static image that represents an aver-
age background image. This is more effective than using a
single frame as a background in that it reduces the effect of
slight changes in lighting conditions. However, using this
technique necessitates that when the program is first run,
for the first 100 frames of video capture, the user must be
out of the video camera’s field of vision so that the user’s
image is not factored into this image.

After the background image is computed, the algorithm
compares this image with the image of the current frame.
The algorithm goes through the images pixel by pixel. If the
absolute value of the difference between a pixel in the back-
ground image and the corresponding pixel in the current

Figure 31: The top image is
the live video image before
processing. The bottom
image is the resultant im-
age after my background
subtraction algorithm is
applied .

55

frame is over a given threshold, it is considered part of the
foreground. All foreground pixels are turned white. In such
a way, an image where the user appears as a white silhou-
ette over a black background is computed.

3.2.2.4. Testing Setup

In order to test and critically evaluate the computer vision
interactions I would develop, I needed to create a test-
ing environment. This space had a number of constraints.
The setup needed to be in an environment with a neutral
background (preferably all the same color) and controlled
lighting conditions. The space also needed to be at least 15
feet long, in order to give enough space between the cam-
era and user so as to allow the user’s entire silhouette to be
captured. Finally, the computer screen also had to be visible
from the user’s perspective, so they would be able to view
the graphics objects with which they were to interact.

I set up an environment in my apartment with these con-
straints in mind. I pointed my camera at a blank white wall,
and covered the red floor with a white sheet in an attempt
to keep the background somewhat uniform. I positioned
the camera 16 feet away from the wall and attached a flood

Figure 32: This was the
testing environment. The
camera and light record ac-
tion in the far room.

Figure 33: The user looks in a
mirror to see the computer
screen and be able to inter-
act with graphic objects.

56

lamp to the top of the camera so as to increase the contrast
between the user and the background while minimizing re-
sulting shadows that could be mistaken for part of the user.
The one problem with this setup was that the white wall
was in one room, and the camera and the computer was in
another. This made it impossible for the user to see their
image on the computer screen, and thus make it impossible
for them to see the graphic blocks with which they were to
interact. To remedy this problem, I positioned a full length
mirror so that the screen could be viewed in the mirror
from in front of the white wall, where the user was sup-
posed to stand. This proved sufficient for testing purposes.

3.3.3. Basic Interactive Building Blocks

Now that I had a developed a pipeline for the creation and
testing of computer vision interactions, I began implement-
ing and testing my initial ideas. I began with developing
a set of building blocks with which I could create other,
more complex interactions. All of these interactions were
designed following the design process I identified earlier.
As such, they all are simple, intuitive interactions that can
be initiated by any part of the user’s body. They also all take
place at the silhouette’s edge.

3.3.3.1. Contact

The Contact interaction is the simplest of the building
blocks. This was the first interaction I created after I set up
my system. A stationary white block on the screen would
simply turn red when the user’s silhouette came into con-
tact with it. This discrete interaction became the fundamen-
tal building block for all of my other interactions. As soon
this simple interaction was built, a huge possibility space
was opened up.

The algorithm I used to detect contact is fairly straight-
forward and could very easily be optimized. Since I never
faced any frame rate issues even when more than 15 or so
blocks were using the algorithm at once, an optimization

Figure 34: The Contact inter-
action simply detects when
a user comes into contact
with a graphic object.

57

of this algorithm was never needed. To detect contact, the
algorithm first grabs any video region the block is currently
lying over, and stores it in an array. This image data is then
passed to a function that simply loops through the array
and counts the number of foreground pixels. If the number
of foreground pixels detected is over a given threshold, con-
tact is detected. To minimize overlap, this threshold is set at
a low number, usually somewhere between 1 and 10.

3.3.3.2. Overlap

The second interactive building block was called Overlap.
Overlap identifies the percentage overlap that occurs when
the user moves their silhouette over a graphic object. While
a small step from contact when considering my algorithm
for detecting contact, it does allow for significantly different
types of interactions to occur. While the second interaction
I created didn’t actually take the percentage of overlap of a
block, it did identify the amount of overlap occurred with
a graphic object. This interaction associated the amount of
overlap with a given “trigger block” on the screen with the
height of another “target block” in the environment. The
more the user’s silhouette overlapped the “trigger block,”
the higher the “target block” rose. This produced a continu-
ous, levitating type of interaction.

The algorithm for detecting overlap is the same as that for
detecting contact, except there is no threshold number of
pixels. This number of pixels determines the amount of
overlap.

3.3.3.3. Reflect

The last of these building blocks I identified was Reflect.
Reflect was actually created after all of the other interactions
and gamelets were completed. As such, it was not used in
any of the gamelets, though it does have a large potential
for use in game environments. The idea for this interaction
was identified after realizing all the other types of interac-
tions I was creating occurred at the silhouette’s edge. This

Figure 36: The Reflect inter-
action calculates the angle
of reflection when a mov-
ing object strikes the user’s
silhouette.

Figure 35: The Overlap inter-
action detects the amount
of overlap when a user
moves their silhouette over
a graphic object.

58

was another obvious edge related interaction which could
be initiated by any part of the user’s body.

Reflect identifies the normal angle of the user’s silhouette
at a point of contact with a graphic object. As such, it gives
the user control over the motion of a traveling object. The
current algorithm for determining the angle of reflection
is not yet complete. As it stands now, the graphic object to
be reflected must be moving one pixel at a time (very slow)
in order for the normal angle of the silhouette’s edge to be
computed correctly. To remedy this problem, a more effec-
tive collision detection is needed. The algorithm currently
works by first identifying the point of contact along the
user’s silhouette. This point of contact is then used in a So-
bel edge detection algorithm in order to compute the nor-
mal angle of the silhouette’s edge. This angle is then used
in combination with the current direction of the graphic
object to compute the angle of reflection.

3.3.4. Game Interactions

After I established this initial set of building blocks with
which to work, I started to create more complex interac-
tions. These new interactions were created by taking these
basic interactive building blocks and associating a resulting
action to it. These actions could affect the graphic object
that was touched, another one in the environment, or the
user’s silhouette. In the following section I will describe
three interactions that were developed from the Contact
building block, and three that were developed from the
Overlap building block.

3.3.4.1. Contact Interactions - Hold, Redirect, Shoot

While there is an infinite number of possible interactions
that could be developed from the Contact building block,
I will discuss the three most successful I developed. The
first of these three interactions is called Hold. In this in-
teraction, the user is presented with a graphic block that
is moving across the screen in a given direction. When the

59

block reaches the edge of the screen, the block wraps, and
appears on the other side of the screen. When the user’s
silhouette touches the block, the block stops. The use can
then “let go” of the block by moving out of its path. In such
a way, the user can control the movement of the block.

The second interaction I developed based on the contact
building block was the Redirect interaction. This interaction
is exactly the same as the hold interaction, except for one
thing. When the user lets go of a held block, the block con-
tinues its movement in the opposite direction. This gives the
effect of the block “bouncing” off of the user. This simple
change produced an interesting and engaging emergent be-
havior. The interaction allowed the user to perform a sort of
dribbling action, where the user could touch the block with
one hand and redirect it to their other hand, which would
touch it and redirect it back to the original hand. This could
be repeated indefinitely to stall the block’s forward move-
ment.

The last interaction I developed from the Contact build-
ing block was a the Shoot interaction. This interaction was
very simple. When the user touches a colored block, a block
of the same color and size would be propelled across the
screen in a given direction.

3.3.4.2. Overlap Interactions - Float, Grow, Push

I also created three different interactions that were based on
the Overlap building block. The first of these interactions,
Float, was discussed earlier when I introduced the over-
lap building block. This interaction simply associates the
amount of overlap when the user touches a graphic block to
the height of another graphic block.

The second of these Overlap based interactions is very simi-
lar to the Float interaction. In this interaction, the amount
of overlap when a user touches a graphic block simply
affects the size of another block. The more the user’s sil-
houette overlaps the trigger block, the larger the other block
will get.

The final Overlap based interaction that I developed was

Figure 38: The Float interac-
tion associates the amount
of overlap with a “trigger
block” (red) with the height
of a “target block” (white).

Figure 37: The Shoot interac-
tion creates a block and
propels it across the screen
when you touch the “trigger
block.”

60

Push. This interaction allows the user to push a block
around the screen. The block can be pushed upwards,
downwards, left and right depending on which side its
pushed from. To create this interaction, I altered the con-
tact detection algorithm. To determine which side the block
is being pushed from, I divide the block into four sections
and count the amount of pixels that overlap each section.
The direction is determined by identifying the section with
the most overlapping pixels. The block is then moved in the
appropriate direction a given distance, dependent on how
deep the overlap is.

3.3.5. Gamelets

The following section will describe the gamelets that were
developed in order to show how these interactions could
be used in a game context. While Color Match, Two Touch
and Color Shooter are all completely implemented, Duck and
Jump and Collide have yet to be fully completed. Though
these games need additions such as timers or displayed
scores, their essential interaction of the experience is full
functional. For clarity’s sake I will describe the envisioned
final version of each.

3.3.5.1. Duck and Jump

The idea for Duck and Jump was the spark that convinced
me of the potential in creating unique computer vision
based games. This game was discussed in the previous sec-
tion Abstracting Action. It was the first game I thought of
after seeing a few videos of Krueger’s Videoplace. The prem-
ise of the game is very simple. The user simply must avoid
touching moving graphic blocks.

To start the game, the user touches a start block located
above their head on the far right of the screen. When the
user touches the block, a timer located at the bottom of the
screen appears, counting upwards. This also starts the gen-
eration of blocks introduced at the left edge of the screen
which scroll horizontally across screen. These blocks are

61

generated at random intervals. However, a given amount
of time must pass after one is generated before another can
be generated. This is done in order to prevent two blocks
from appearing in quick succession. These graphic blocks
are approximately a fifth the size of the user’s silhouette and
all travel across the screen at the same speed. Their vertical
position on the screen can be one of two possibilities: head
or foot level. This is randomly determined when the block’s
is initially generated.

As stated earlier, the object of the game is simply to avoid
touching the scrolling graphic blocks. The easiest way to
accomplish this task is to stand in the far right hand corner
of the screen and watch the left side of the screen as blocks
appear. If a block appears at the bottom, the user must then
jump or step over the approaching block at the appropri-
ate time in order to avoid it. If the block is approaching the
user’s head, the user must duck under the block. When the
user touches three blocks, the game ends. As the game pro-
gresses, the speed at which the blocks are generated gradu-
ally speeds up, making the task more difficult.

The object of this game is simply to stay alive for as long as
possible. Thus the higher the time that appears at the end of
the game, the better the player has done.

Figure 39: In Duck and Jump,
the user attempts to avoid
blocks that travel horizon-
tally across the screen. This
image shows a few consecu-
tive frames from the game
overlaid.

Figure 40-43: A sequence of
frames from Duck and Jump.

62

3.3.5.2. Collide

The idea for Collide was developed naturally through the
development of the Hold and Redirect game interactions.
While this game could exist using either one of these inter-
actions, the more engaging version uses the Redirect interac-
tion.

The user starts the game by touching a block located above
their head, in the middle of the screen. When the user
touches the start block, a timer located at the bottom of
the screen starts counting down from 30 seconds. Blocks
then appear two at a time, each of which is introduced at a
random point on the edge of the screen. In each pair, one
block moves horizontally, and one moves vertically. The
blocks wrap, so when they move off one side of the screen,
they reappear on the other. When the player touches a
block, the block reverses directions. When two blocks col-
lide, they disappear. After the two blocks collide, a point is
gained, and two more blocks randomly appear. This process
continues until the 30 seconds has expired. The object of
the game is to collide as many blocks, and thus score as
many points, as possible in 30 seconds.

Figure 44: In Collide, the
user attempts to collide
moving blocks by reflect-
ing them into each other.
In this screenshot, the user
is attempting to reflect the
red block to the top of the
screen in order to collide
with the block now lo-
cated at the top right of the
screen.

Figure 45-48: A sequence of
frames from Collide.

63

3.3.5.3. Color Match

The idea for this simple game came from thinking about
how to develop a computer vision based Dance Dance Revo-
lution or Simon type game where the user has to touch vari-
ous points on the screen rather than positions on a footpad.

To start the game, the user touches the start block located
above their head, in the middle of the screen. When this
block is touched, a timer appears at the bottom of the
screen which counts down from 30 seconds. Six different
colored blocks also appear around the user’s silhouette.
Red, yellow and blue blocks appear to the user’s left, and
green purple and orange blocks appear to the user’s right.
The user is presented with a “target block” located on the
bottom of the screen who’s color matches the color of one
of the six blocks around the player. When the user touches
the block with the same color as the target block, the target
block changes color and a point is gained. The game ends
after the 30 seconds expire. The object of the game is to
touch as many target colored as blocks as possible in these
30 seconds.

Figure 49: In Color Match,
the user attempts to touch
the colored block that
matches the “target block”
located at the bottom of the
screen as fast as possible.
When the correct block is
selected, the “target block”
changes color and the
process is repeated. This
image shows a few consecu-
tive frames from the game
overlaid.

Figure 50-53: A sequence of
frames from Color Match.

64

3.3.5.4. Two Touch

The idea for the two touch game came after the creation
of Color Match. In a way, Two Touch can be seen almost as a
combination of the ideas that created Color Match and Col-
lide. Two Touch is a game where the blocks move similar to
the way the do in Collide, but whose essential interaction is
closer to that in Color Match.

The user starts the game by touching a block located above
their head, in the middle of the screen. When the game is
started, a timer appears at the bottom of the screen that
counts down from 30 seconds. Different colored blocks
are introduced at random positions along the screen edges.
When these blocks are initially generated, their color is
also randomly determined as one of three different colors:
yellow, red or purple. The colored blocks scroll vertically
and horizontally across the screen, and wrap as in Collide.
When the user touches two blocks of the same color, they
disappear and a point is gained. The game ends after the 30
seconds expire. The object of the game is to collect as many
points possible in these 30 seconds.

Figure 54: In Two Touch, the
user attempts to two blocks
of the same color at the
same time. The blocks travel
horizontally and vertically
across the screen.

Figure 55-58: A sequence of
frames from Two Touch.

65

3.3.5.5. Color Shooter

The idea for Color Shooter was devised after the creation of
Color Match. The game was initially imagined to have the
same initial setup as Color Match, with six blocks surround-
ing the user. However, this setup proved too complicated,
and the game was simplified by eliminating the blocks to
the user’s right. It was during the creation of this game that
the Shoot interaction discussed previously was first devel-
oped.

To start the game, the user touches a block located above
their head, on the far right of the screen. After this block is
touched, a timer appears at the bottom of the screen count-
ing upwards. Three different colored blocks also appear to
the user’s right. These blocks are colored yellow, red and
blue. When a colored block is touched, a block of that color
is propelled across the screen. On the left side of the screen,
a series of blocks scroll upwards. The series of blocks wraps
to the bottom of the screen. When a block in the series is
shot with a block of the same color, it disappears. When
a block in the series is a secondary color and is shot by
a color that makes it up, that block turns into the other
primary color that makes it up (an orange block hit with a
yellow block turns red). The object of the game is to get rid
of all of the blocks in the series as fast as you can. The lower

Figure 59: In Color Shooter,
the user attempts shoot
colored blocks at a line of
vertically scrolling blocks on
the left side of the screen.

Figure 60-63: An sequence
of frames from Color
Shooter.

66

4. Evaluation and Analysis

In this chapter, I will evaluate the five gamelets introduced
in the previous section, as well as the project as a whole.
I will attempt to address questions such as: What is the
experience of playing these gamelets like? How long do they
keep a player’s interest? Do they successfully incorporate
the advantages of using computer vision? In order to answer
these questions, I’ve divided the following chapter into
three sections. The first of these sections, General Gamelet
Experiences and Playability, will describe my experiences
playing each gamelet, critically evaluate these experiences
from a game play perspective, and suggest features to be
considered if each were to be turned into a fully realized
game. The next section, Comparative Evaluation, will com-
paratively evaluate how successfully the gamelets incorpo-
rated the advantages of computer vision I identified in the
background chapter of this paper, as well as how success-
ful they were at providing an engaging game experience.
Finally, in Project Evaluation, I will evaluate the project as a
whole, including both process and product.

4.1. General Gamelet Experiences
and Playability

4.1.1. Duck and Jump

Duck and Jump is definitely the most exhilarating and
exhausting of the gamelets created. I found myself becom-
ing winded after a minute or so of playing. Though its
athleticism is a crucial aspect to the fun of the experience,
it brings up interesting questions about the design of such
games. How much should aerobic fatigue be factored into
the gameplay? How important should fitness and aerobic
stamina be to achieving success?

67

From my experience of playing different versions of the
game, I think the most successful version of Duck and Jump
would balance the importance a user’s skill and aerobic
stamina. In the first version of Duck and Jump I created, the
blocks that were propelled at the user were too large, and
they scrolled to slowly. In this version I became winded a
bit too quickly. While the game was fun, it bordered on feel-
ing like a workout. To remedy this problem, I reduced the
block size, sped up the speed at which the blocks traveled
and shrunk the size of the user so as to give user more time
to see the approaching blocks. After these alterations, the
game became much more enjoyable. While the experience
of the game was still a fairly aerobic one, I found myself
attempting to figure out how to expend the least amount of
energy while still successfully dodging the blocks. If timed
correctly, the user could successfully jump over a quickly
traveling block with minimal effort. In such a way, an accu-
rate jump and ducker could limit his physical exertion and
still be successful. While this quick fix did greatly improve
the overall game experience, I barely scratched the surface
in terms of investigating this issue of fitness. Were I to cre-
ate this into a fully realized game experience, many more
experiments and tweaking of variables would need to be
carried out.

Another problem with the game is that it is a bit too one
dimensional. The only interaction involved is avoiding.
The game’s premise is simple enough that more activities
could be incorporated into the game experience without
overwhelming the user. Since the blocks scroll so quickly
across the screen and are introduced at random intervals,
there exists points in the gameplay where the user is simply
waiting for blocks to appear. While this represents impor-
tant recovery time, another activity could be encouraged to
happen during this time. One possibility is to have different
colored blocks slowly fall from the top of the screen. These
blocks could contain bonuses of some kind that could be
obtained if touched before they scroll off the screen. These
colored blocks would tempt the player to other parts of the
screen besides the right corner. If caught in the middle of
the screen while attempting to catch a falling block, the user
would have less time to react to approaching blocks. Pos-
sible bonuses could be extra lives or possibly time towards

Figure 64: A screenshot from
Duck and Jump. The user
jumps just high enough to
clear the block.

68

a block that, when touched, would turn your silhouette
invisible.

Another addition to the game that could possibly change
the game experience for the better would be a small macro
view of the experience that could show the user far in ad-
vance when and where blocks were approaching.

4.1.2. Collide

The core mechanic of Collide is quite a satisfying one.
Learning how to control the scrolling blocks by repeatedly
redirecting them from one hand to the other proves chal-
lenging and fun to master. While this interaction is perhaps
one of the most engaging the interactions I’ve incorporated
into a game context, the design of the game itself is perhaps
the least developed. As imagined now, the gamelet would
repeatedly present the user with two blocks they must col-
lide together. This is perhaps too simple too keep a user’s
interest if it were to exist as a fully realized game.

One way to complexity to the game experience would be
simply to have more than two blocks on the screen at once.
Perhaps four to eight blocks could exist on the screen at
once. The blocks would be different colors, and would only
disappear if they ran into a block of the same color. For
this model to be implemented successfully, many tests and
experiments would need to be conducted to determine the
amount of blocks that can exist on the screen at once before
the user gets completely overwhelmed.

Such an addition to the game would add another aspect
to the game experience that doesn’t exist in the current
version of Collide. In order to explain the aspect of the
gameplay of which I am speaking, I will describe how it is
successfully incorporated into the experience of two exist-
ing games. These two games are gameLab’s Crash and Blix.
Like Collide, both of these games allow the user to coordi-
nate the timing of predictably moving objects in order to
achieve a given goal. In Crash, the user, by clicking on cars
in order to slow them down and speed them up, attempts to
prevent crashes between cars (a sort of anti-Collide). When

Figure 65 and 66: Two
screenshots from Collide.
The user “dribbles” a block
back and forth.

69

first playing Crash, a novice user intensely will watch as two
cars pass each other to make sure that the cars are set at
speeds so that they don’t run into each other. As a player
gets better, the point at which he knows when two cars will
crash and when they won’t becomes earlier and earlier. As
such, this lets the user set the speeds of two cars so they
won’t crash, and then move on to deal with the next two
cars. In such a way, the user can start to handle more and
more cars. In Blix, where the user has to direct horizontally
and vertically squares into goal cups by placing walls in
the environment, a similar thing occurs. A novice player of
Blix will direct squares to their goal cups one at a time, and
won’t start directing the next block until he watches the
first one go in the cup. As a user gets better, he will start
dealing with other blocks before the previous one reaches
the cup. The user knows he or she has set up a situation
where the block must eventually reach the cup successfully.

With more than two blocks on the screen at one time, a
similar situation could occur in Collide. A experienced user
will know that two blocks are set up to hit each other and
be able to concentrate on colliding the other blocks. Allow-
ing for this type of interaction to occur tends reward more
experienced players, and provide more lasting gameplay.
Such an experience could not occur in a version with where
only two blocks appear on the screen at once.

Figure 67 and 68: On the
left, a screenshot from Blix,
on the right, a screenshot
from Crash.

70

4.1.3. Color Match

As it exists now, Color Match is only engaging for a very
limited amount of time. The primary reason for this is that
a user quickly reaches a point where there is very little
room for improvement. Though my score increased the first
three or four times I played the gamelet, after this point, I
couldn’t improve upon my score. There is always a small
amount of time it takes to recognize what color you are be-
ing presented with. Attempting to limit this amount of time
tends to be more frustrating than engaging after a certain
point.

However, despite its current problems, I think the game-
let has a lot of potential for improvement. There are a few
small changes that could immediately add the its gameplay.
One of these is simply changing the target block from an
individual block to a scrolling list of target blocks. This list
would allow to see the next target block in advance which
would give more advanced users the opportunity to prepare
for it earlier. Another small change that could drastically
improve its gameplay, would be to allow two target blocks
to appear at the same time. The user would then have to
touch both blocks at the same time in order to move on the
next block.

Another large potential in this game lies in the effective
incorporation of sound and music. One option is to cre-
ate a Dance Dance Revolution type game, where there is a
soundtrack, and the user must sync the touching of the
blocks to the beat in the music. Another perhaps more in-
teresting option would be to try and utilize a more genera-
tive model, where the user actually creates sound through
touching the blocks. One option would be to create a game
where the user has to actually play a beat or composition
at a certain speed before he can advance to a more difficult
one.

4.1.4. Two Touch

Two Touch provides an interesting interactive experience.
While for the most part the experience of playing it is

Figure 69: A screenshot from
Color Match.

71

somewhat frustrating, it does provides some unique and
dramatic interactive moments that point to its potential.
The gamelet’s main problem is that most of the blocks that
scroll on the screen are either out of the user’s reach or they
just happen to run into the user’s silhouette and disap-
pear. The fun moments come on the rare occasions when
two similarly colored blocks are within reach of the user’s
silhouette, but don’t actually run into it. These situations,
while somewhat rare, can leas to some very interesting an
unique motions and movements. For the majority of the
game as it exists now, the user waits for these kinds of mo-
ments to occur.

A few adjustments could be made that would, hopefully,
make these moments occur more frequently. This could be
accomplished by restricting the positions where blocks can
be introduced. When a new block is generated, the program
could find the dimensions of the user’s silhouette as well as
the user’s range of motion and randomly select a position
between the user and the edge of the user’s range of mo-
tion.

4.1.5. Color Shooter

Color Shooter is the most complete of the gamelets and is
by far the most fun to play. The shoot interaction in itself
is a very satisfying one, and coordinating its timing to hit
an other blocks adds to this. Another reason for its success
is how the trigger blocks are positioned in relation to the
user’s body. While a similar type of game could be created
as a game played with a mouse, where the user would click
on the appropriate trigger block, it would not be nearly as
engaging. One reason for this is because of the pleasure that
is gained from being able to punch and kick the blocks. Co-
ordinating the timing of a punch or kick is much more chal-
lenging and fun than coordinating the timing of a mouse
click. Another advantage of the computer vision based
version is the user’s ability to trigger more than one block at
the same time, by kicking and punching at the same time.

While the game does have many strengths, it also has some
significant weaknesses. The main weakness of the game

Figure 70: A screenshot from
Two Touch.

Figure 71: A screenshot from
Color Shooter.

72

is that it fails to fully incorporate the advantages of us-
ing computer vision as a gaming interface. Though it does
provide a full body interactive experience, there isn’t much
flexibility or variation in the type of interactivity that occurs.
As such, it limits the amount of creative solutions possible.
This is due to the limitations of the shooting interaction.
Because all the trigger blocks are all stationary, and these
trigger blocks are where all of the game’s interaction occurs,
it tends to encourage a fairly uniform type of interaction.

4.2. Comparative Evaluation

In the following section I compare the gamelets’ success
in two different respects. I will compare their success in
incorporating the advantages of using computer vision as
a gaming interface, as well as their success from a general
gameplay perspective. I’ve identified five different axes
to compare the different gamelets along. These axes were
taken from the five advantages of using computer vision in
video games identified in the background chapter, except
for Closer Interactive Mappings. This is left out because my
design process necessitated that all of the interactions I
developed would be triggered by direct manipulation. As
such, all games would be equally successful along this axis.
The axes identified are: Athletic, Expressive, Full Body,
Vocabulary of Action, and Playability. I’ve created a series
of icons for the five different gamelets in order to facilitate a
visual analysis.

Figure 72: A key to the icons
used in the comparative
analysis of the gamelets.

Duck and JumpTwo Touch Color Shooter

Color Match Collide

73

4.1.1. Athleticism

How successfully does each gamelet incorporate the poten-
tial for athletic interaction that computer vision provides?
While each game allows for a full body interaction, some
encourage faster and more sustained movement than oth-
ers. Duck and Jump, by far, provides the most athletic expe-
rience of all the games. Color Shooter, because of the nature
of the shooting interaction and its stationary interactive
blocks, necessitates the least amount of athletic activity.

4.1.2. Expressivity

This axes addresses the dramatic and performance nature
of the interactive experiences the gamelets provide. The
games I have rated the most successful on this axis encour-
age the most dramatic and expressive interactive experi-
ences. They are also the gamelets that would be most apt
to accentuate differences in users’ personalities. Two Touch,
Duck and Jump, and Collide all encourage a fair amount of
unique interaction that could potentially allow for more
user expression. Because of their limited interactive range
and their stationary interactive blocks, Color Shooter and
Color Match both encourage a fairly uniform interactive
experience.

Figure 73: How athletic of
an experience each gamelet
provides.

Figure 74: How much each
gamelet encourages expres-
sive interaction.

less athletic more

less expressive more

74

4.1.3. Whole Body

 This axis analyzes how successfully each game encourages
the players use of their entire body. Because of the design
process I identified in the Methodology section, all of the ac-
tual interactions in each gamelet should be able to be trig-
gered by any part of the user’s silhouette. However, some
games are more successful then others at encouraging this
type of interaction from the user. Two Touch is the most suc-
cessful of the games at encouraging full body interaction.
Two Touch user’s often end up contorting and stretching
their bodies in order to touch two blocks at the same time.

4.1.4. Vocabulary of Action

Vocabulary of Action refers to the number of significantly
different types of interactions that can be recognized by
each gamelet. This axis is to help me get a general idea
of which gamelets encourage a wide variety of action and
which gamelets provide a more one dimensional interactive
experience. Two Touch and Collide were the most success-
ful gamelets at encouraging a wide range of interactions.
This is probably partially due to the fact that in both these
gamelets, the user interacts with blocks that are constantly
moving.

Figure 75: How much each
gamelet encourages full
body interaction.

Figure 76: How many differ-
ent types of interactions are
available in each gamelet
experience.

less whole body more

less vocab of action more

75

4.1.5. Playability

I’ve defined Playability in this context as a combination of
how long each gamelet holds my interest and how enjoyable
the experience of playing it is. While this is definitely the
most subjective and slippery of the axes, it is also perhaps
the most important. Providing engaging gameplay and fun
are the ultimate goals in creating any game experience. As
such, any gamelet I produce that does not provide an en-
gaging experience of some sort, or point to potential direc-
tions that could provide such an experience, is useless to
my study. I found the most engaging of the gamelets as they
exist now, to be Color Shooter.

4.3. Project Evaluation

In order to evaluate this project as a whole, I will investigate
my project from a few different perspectives. I will first eval-
uate the process I went through to formulate my concept. I
will then evaluate the process of creating the game interac-
tions, and the gamelets themselves. Finally, I will address
the evaluation of the gamelet experiences as a whole.

As evident by the length of the Initial Interests and Abstract-
ing Action sections of the Methodology section, the develop-
ment of a solid conceptual base for this project was one
of the most challenging aspects of this project. While the
process I went through to formulate the concept for this
project proved to be a valuable personal learning experi-
ence.

Having said this, overall, I view this project as a success.
The main goal of the project, which was to show the po-
tential of full body interactions in video games was, in my

Figure 77: How fun is each
gamelet to play.

less playability more

76

opinion, successfully communicated through the number
of engaging interactions and gamelets proposed by this
thesis. I think this is partially due to the creative process I
developed for myself. This process entailed breaking down
the problem into smaller and smaller problems, and con-
straining my design process to focus on the issues I was
most concerned with. Restricting my visual language as well
as the types of interactive experiences I could create (only
those that occur at the edge of a user’s silhouette), facili-
tated experimentation and the implementation of my ideas
by dramatically reducing the scope of the problem. I think
that this process reduced the overwhelming nature of the
questions I was asking and allowed me to focus on the basic
interactive issues that were crucial to their solutions.

The last evaluation missing from this project will occur by
watching the user response to the final installation piece.
While I had a few people play the gamelets I created in the
testing setup I developed at my apartment, this installa-
tion was significantly flawed, and as such, it was difficult to
evaluate whether any confusion that occurred during their
play was due to the gamelets themselves, or the setup. With
a free range of motion, a backlit background, and most im-
portantly, a large projected display, the experience of these
gamelets will be completely different.

77

5. Conclusions

5.1. Conclusion

The underlying goal of this project from its conception has
been to challenge the traditional image of the video game
experience. It attempts to do this by offering an alternative
to the stationary, hand-centric experience that most existing
video games provide. It proposes a scenario where the play-
er can affect action in the game by using their entire body,
free of wires and controllers. In order to facilitate such an
unencumbered interactive experience, a video camera is
used as an input device. In a setup similar to Krueger’s
Videoplace, the user stands in front of a video camera, which
records their live video image. Using computer vision, this
image is then processed, and the user’s silhouette is extract-
ed. The user’s silhouette, as well as game objects with which
they can interact, is then projected on a surface in front of
them.

While there exists a few systems that use computer vision
in a video game context, such as the Vivid Group’s Man-
dala GX System, Reality Fusion’s GameCam and Intel’s
Me2Cam, each of these systems fail to fully incorporate
the its potentials as a gaming interface. Most of the games
developed for the Mandala GX System utilize symbolic
interactions rather than literal ones, which increases the
distance between action and outcome, and thus makes
them less intuitive. The GameCam, and the Me2Cam both
use USB webcam technologies which, while cheap, causes
a low frame rate that distracts from the experience. Also,
the games designed for these systems we created for young
children and as such, can only hold a user’s attention for a
limited amount of time.

 To aid in the creation of more engaging and intuitive full
body games, this thesis identifies a vocabulary of possible
computer vision based game interactions. A series of func-
tional game scenarios, or “gamelets,” were then created to

78

demonstrate how these interactions can be incorporated
into game contexts. These gamelets were then evaluated
based on how successfully each incorporated the advan-
tages of using computer vision as an interface and on how
fun they are to play.

5.2. Future Directions

Perhaps the biggest success of this thesis are the oppor-
tunities for further investigation and development it has
revealed. During the creation of this project, new avenues
of exploration were constantly being discovered, not only by
myself, but by peers and advisors as well. When presenting
my project to others, suggestions for new features, potential
interactions, and game ideas came by the dozens. In order
to stay focused enough to demonstrate any one concept in
depth, many of these ideas needed to be tabled. Since many
of these ideas and suggestions were extremely good ones,
the documentation of these ideas became an important
exercise. In the following section, I will discuss the most
important of these documented ideas.

One of these future directions entails the incorporation of
dramatic positive and negative feedback. For example, in
the game Collide, as it currently exists, when two blocks col-
lide, they simply disappear. This feedback is somewhat sub-
tle, and doesn’t provide the user with a satisfying enough
response to the successful completion of a task. A small
animation when two blocks collide could add a lot to the
game experience, as would sound effects. Such an anima-
tion could simply be a short animation of the blocks getting
larger and fading to black, rotating the blocks and fading
to black, or simple a flash of the appropriate color. Sounds
could be anything from a gunshot, to a atari type noise, to
an exclamation. Similar types of feedback using animation
and sound could be incorporated into each gamelet.

Another future direction involves the creation of games
that utilize the Push and Reflect interactions I identified

79

in the Methodology chapter. Both of these interactions are
engaging simply as interactive experiences, but have yet to
be shown how they could be used in a game context. One
game idea involving the Push interaction that has yet to be
implemented involves pushing a block around in order to
redirect a constantly growing line towards various goal posi-
tions. While the Reflect interaction has enormous potential
for use in computer vision games (and has been used in
existing games like the Vivid Group’s Volleyball), since it was
one of the last interactions developed, I didn’t have the op-
portunity to show its use in a game context. A simple game
that could incorporate the Reflect interaction would be one
where the user attempts to redirect randomly generated col-
ored balls traveling across the screen into similarly colored
stationary goal positions.

Issues related to the specifics of its installation experience
have also yet to be fully fleshed out. The biggest challenges
in creating an installation that allows users to play the mul-
tiple gamelets include: designing an intuitive interface to al-
low the user to select between gamelets, educating the users
on how to play the gamelets, and recording high scores for
each gamelet.

Perhaps the largest potential area for future exploration is
the development of computer vision games that allow mul-
tiple users to play at once. The incorporation of multiple
users in such a gaming environment has enormous poten-
tial for creating interesting social dynamics. Because of the
area’s huge potentials, and the fact that the design of such
games involves a significantly different type of thinking, I
felt as if I didn’t have the time to sufficiently address this
topic in this thesis. However, it is an area I will be sure to be
explore in the future development of this project.

80

Appendix A. Gamelet
Pseudocode

A.1. Duck and Jump

void mainloop(){
 if (frameCt > 100) {
 if (startBlock->isActive) {
 glReadPixels(startBlock->xPos,
 startBlock->yPos, startBlock-
 >height, startBlock->width, test_
 block);

 startBlock->intersect(test_
 block);

 if (startBlock->numHit==1) {
 startGame();
 }
 }
 if (gameState == 1) {
 createBlocks();
 updateBlocks();
 }
 }
 frameCt++;
}

void createBlocks(){
 int randNum = 0;
 int nextBlock;

 randNum = int(rand() % blockFreq);
 nextBlock = findNextFreeBlock();
 if (createBuffer < frameCt - lastCreated) {
 if (randNum == 0) {
 blocks[nextBlock]->isActive=true;
 lastCreated=frameCt;
 randNum = int(rand() % 2);
 if (randNum == 0) {
 blocks[nextBlock]-
 >setPos(-40, 155);
 }
 else {
 blocks[nextBlock]-
 >setPos(-40, 415);
 }
 }
 }

81

}

void updateBlocks(){
 for(int i=0;i<10;i++) {
 if (blocks[i]->isActive) {
 glReadPixels(blocks[i]->xPos,
 blocks[i]->yPos, blocks[i]-
 >height, blocks[i]->width, test_
 block);

 blocks[i]->intersect(test_block);
 blocks[i]->move(20,0);
 }
 }
}

A.2. Collide

void mainloop(){
 if (frameCt > 100) {
 if (gameState == 0) {
 test_block = getScreenRegion(
 startBlock->xPos, startBlock-
 >yPos, startBlock->width,
 startBlock->height);

 startBlock->intersect(test_
 block);

 if (startBlock->isHit == true) {
 startGame();
 blocks[0]->isActive=true;
 blocks[0]->setPos(0, 400);
 blocks[1]->isActive=true;
 blocks[1]->direction=2;
 blocks[1]->setPos(300, 0);
 }
 }
 else {
 updateBlocks();
 collisionDetect();
 }
 }
 frameCt++;
}

void updateBlocks(){
 for(int i=0;i<10;i++) {
 if (blocks[i]->isActive) {
 test_block = getScreenRegion(
 blocks[i]->xPos, blocks[i]->yPos,
 blocks[i]->width, blocks[i]-
 >height);

82

 blocks[i]->intersect(test_block);
 if (blocks[i]->isHit == false)
 blocks[i]->moveWrap(7);
 }
 }
}

A.3. Color Match

void mainloop(){
 if (frameCt > 100) {
 if (gameState == 0) {
 test_block = getScreenRegion(
 startBlock->xPos, startBlock-
 >yPos, startBlock->width,
 startBlock->height);

 startBlock->intersect(test_
 block);

 if (startBlock->numHit==1) {
 startGame();
 }
 }
 else if (gameState == 1) {
 checkForMatch();
 createBlocks();
 updateBlocks();
 if (!theTimer->isActive)
 gameState = 2;
 }
 }
 frameCt++;
}

void createBlocks(){
 int randNum = 0;
 randNum = int(rand() % 6);
 if (!target_blocks[0]->isActive) {
 target_blocks[0]->isActive = true;
 if (randNum == 0)
 target_blocks[0]->
 changeColor(0.0f, 0.0f, 1.0f);
 else if (randNum == 1)
 target_blocks[0]->
 changeColor(1.0f, 1.0f, 0.0f);
 else if (randNum == 2)
 target_blocks[0]-
 >changeColor(1.0f, 0.0f, 0.0f);
 else if (randNum == 3)
 target_blocks[0]-

83

 >changeColor(1.0f, 0.5f, 0.0f);
 else if (randNum == 4)
 target_blocks[0]-
 >changeColor(1.0f, 0.0f, 1.0f);
 else if (randNum == 5)
 target_blocks[0]-
 >changeColor(0.0f, 1.0f, 0.0f);
 }
}

void updateBlocks(){
 for(int i=0;i<6;i++) {
 if (active_blocks[i]->isActive) {

 test_block =
 getScreenRegion(active_blocks[i]-
 >xPos, active_blocks[i]->yPos,
 active_blocks[i]->height, active_
 blocks[i]->width);

 active_blocks[i]->intersect(test_
 block);
 }
 }
}

A.4. Two Touch

void mainloop(){
 if (frameCt > 100) {
 if (gameState == 0) {
 test_block = getScreenRegion(sta
 rtBlock->xPos, startBlock->yPos,
 startBlock->width, startBlock-
 >height);

 startBlock->intersect(test_
 block);

 if (startBlock->numHit==1) {
 startGame();
 }
 }
 else if (gameState == 1) {
 checkForMatch();
 createBlocks();
 updateBlocks();
 if (!theTimer->isActive)
 gameState = 2;
 }
 }
 frameCt++;

}

84

void createBlocks(){
 int randNum = 0;
 int nextBlock;

 randNum = int(rand() % blockFreq);
 nextBlock = findNextFreeBlock();
 if (createBuffer < frameCt - lastCreated) {
 if (randNum == 0) {
 blocks[nextBlock]->isActive =
 true;

 lastCreated = frameCt;
 randNum = int(rand() % 4);
 blocks[nextBlock]->direction =
 randNum;

 if (blocks[nextBlock]->direction
 == 0) {

 randNum = int((rand() %
 int(pixZoomX*320)) + vidOffsetX);
 blocks[nextBlock]-
 >setPos(randNum, 0);
 }
 else if (blocks[nextBlock]-
 >direction == 1) {

 randNum = int((rand() %
 int(pixZoomY*240)) + vidOffsetY);
 blocks[nextBlock]->setPos(0,
 randNum);

 }
 else if (blocks[nextBlock]-
 >direction == 2) {

 randNum = int((rand() %
 int(pixZoomX*320)) + vidOffsetX);

 blocks[nextBlock]->setPos(-
 randNum, 600);

 }
 else if (blocks[nextBlock]-
 >direction == 3) {

 randNum = int((rand() %
 int(pixZoomY*240)) + vidOffsetY
);

 blocks[nextBlock]->setPos(800,
 randNum);
 }
 randNum = int(rand() % 6);
 if (randNum == 0) {

85

 blocks[nextBlock]-
 >changeColor(1.0f, 0.0f, 0.0f);

 }
 else if (randNum == 1) {

 blocks[nextBlock]-
 >changeColor(1.0f, 1.0f, 0.0f);

 }
 else if (randNum == 2) {

 blocks[nextBlock]-
 >changeColor(1.0f, 1.0f, 0.0f);

 }
 else if (randNum == 3) {

 blocks[nextBlock]-
 >changeColor(0.0f, 1.0f, 0.0f);

 }
 else if (randNum == 4) {

 blocks[nextBlock]-
 >changeColor(1.0f, 0.0f, 1.0f);

 }
 else {

 blocks[nextBlock]-
 >changeColor(1.0f, 0.5f, 0.0f);

 }
 }
 }
}

void updateBlocks(){
 for(int i=0;i<20;i++) {
 if (blocks[i]->isActive) {

 test_block = getScreenRegion(bl
 ocks[i]->xPos, blocks[i]->yPos,
 blocks[i]->height, blocks[i]-
 >width);

 blocks[i]->intersect(test_block);
 blocks[i]->moveWrap(15);
 }
 }
}

86

A.5. Color Shooter

void mainloop(){

 if (frameCt > 100) {
 if (gameState == 0) {
 test_block = getScreenRegion(sta
 rtBlock->xPos, startBlock->yPos,
 startBlock->width, startBlock-
 >height);

 startBlock->intersect(test_
 block);

 if (startBlock->numHit==1) {
 startGame();
 }
 }
 else if (gameState == 1) {
 checkForMatch();
 createBlocks();
 updateBlocks();
 collisionDetect();
 if (!theTimer->isActive)
 gameState = 2;
 }
 }
 frameCt++;
}

void createBlocks(){
 int randNum = 0;

 randNum = int(rand() % 6);
 if (!target_blocks[0]->isActive) {

 target_blocks[0]->isActive = true;

 if (randNum == 0)
 target_blocks[0]-
 >changeColor(0.0f, 0.0f, 1.0f);
 else if (randNum == 1)
 target_blocks[0]-
 >changeColor(1.0f, 1.0f, 0.0f);
 else if (randNum == 2)
 target_blocks[0]-
 >changeColor(1.0f, 0.0f, 0.0f);
 else if (randNum == 3)
 target_blocks[0]-
 >changeColor(1.0f, 0.5f, 0.0f);
 else if (randNum == 4)
 target_blocks[0]-
 >changeColor(1.0f, 0.0f, 1.0f);
 else if (randNum == 5)

87

 target_blocks[0]-
 >changeColor(0.0f, 1.0f, 0.0f);
 }
}

void updateBlocks(){
 for(int i=0;i<3;i++) {
 if (active_blocks[i]->isActive) {
 int hitCount = active_blocks[i]-
 >numHit;

 test_block =
 getScreenRegion(active_blocks[i]-
 >xPos, active_blocks[i]->yPos,
 active_blocks[i]->height, active_
 blocks[i]->width);

 active_blocks[i]->intersect(test_
 block);

 if (hitCount < active_blocks[i]-
 >numHit && !shot_blocks[i]-
 >isActive) {

 shot_blocks[i]->isActive =
 true;
 }
 }
 }
 for(int i=0;i<3;i++) {
 if (shot_blocks[i]->isActive) {
 shot_blocks[i]->move(20);
 }
 }
 for(int i=0;i<10;i++) {
 if (target_blocks[i]->isActive) {
 target_blocks[i]->moveWrap(5);
 }
 }
}

88

Bibliography

Able Minds, Inc. “Me2Cam.” <http://www.cyberkids.com/
cy/so/mul/html/me2cam.html>, 2000.

Ars Electronica 99. LifeScience. <http://www.aec.at/
lifescience/pressepic/pic_installations2.html>

Berger, Sandy. “Me2Cam.” <http://www.compukiss.com/
populartopics/computercenterhtm/review93.htm>, 2000.

Burnham, Van. Supercade: A Visual History of the Videogame
Age, 1971-1984. Cambridge, Mass: The MIT Press, 2001.

CNET Networks. “Put Yourself into the Game.” <http:
//zdnet.com.com/2100-11-518799.html?legacy=zdnn>,
2000.

Crawford, Chris. The Art of Computer Game Design. Os-
borne McGraw-Hill, 1984.

D’Hooge, Herman and Goldsmith, Michael. “Game De-
sign Principles for the Intel® Play™ Me2Cam Virtual
Game System.”

<http://www.intel.com/technology/itj/q42001/articles/art_
4.htm>, 1999.

Epinions. “Reality Fusion GameCam.” <http://

89

www.epinions.com/cmhd-MiscPeripherals-All-Reality_Fu-
sion_GameCam/display_~reviews>, 2000.

Freeman, W. T. et al, “Computer Vision for Interactive
Computer Graphics,” IEEE Computer Graphics and Applica-
tions, Vol. 18, No. 3. May-June 1998

Freeman, W. T. et al, “Computer Vision for Computer
Games,” 2nd International Conference on Automatic Face and
Gesture Recognition. Killington, VT, 1996.

Herz, J.C. Joystick Nation. Boston, Mass: Little, Brown and
Company, 1997.

Hunter, William. “From Pong to Pac-Man.” <http://
www.designboom.com/eng/education/pong.html>, 2000.

Holmquist, Lars Erik. “The Right Kind of Challenge:
Game Design and Human-Computer Interaction.” In Pro-
ceedings of IRIS 20. <http://iris.informatik.gu.se/conference/
iris20/16.htm>, 1997.

Jenkins, Henry. “Games, the New Lively Art,” Handbook of
Computer Game Studies. Cambridge, Mass: The MIT Press,
2003 (forthcoming).

Krueger, Myron W. Artificial Reality II. Reading, Mass: Ad-
dison-Wesley, 1991.

90

Myron Krueger. “Environmental technology: Making the
real world virtual.” Communications of the ACM, 36(7):36
37, July 1993.

Laurel, Brenda. Computers As Theatre. Reading, Mass: Ad-
dison-Wesley, 1991.

Myler, Harley R. and Weeks, Arthur R. The Pocket Hand-
book of Image Processing Algorithms in C. Upper Saddle
River, NJ: Prentice Hall, 1993.

Newman, James. “The Myth of the Ergodic Videogame,”
Game Studies. The International Journal of Computer Game
Research. <http://www.gamestudies.org//0102/newman/>,
2001.

Salen, Katie and Zimmerman, Eric. Rules of Play: Funda-
mentals of Game Design. Cambridge, Mass: The MIT Press,
2003 (forthcoming).

Sengupta, Kuntal; Bing, Wong Hon and Kumar, Pan-
kaj. “Computer Vision Games Using A Cheap (<
100 $) Webcam.” <www.ece.nus.edu.sg/stfpage/eleks/
ICARCV’2000.pdf>.

Reality Fusion. GameCam. <http://www.realityfusion.com/
corp/products/gamecam>, 1999.

Vajpeyi, Praveen. Myron Krueger. <http://
bubblegum.parsons.edu/~praveen/thesis/html/wk05_
1.html>, 2002.

91

The Vivid Group. The Mandala Gesture Xtreme System.
<http://www.vividgroup.com/products_main.html>, 1996.

ZMedia. “Reality Fusion.” <http://www.digitalduo.com/
221_dig.html>, 2000.

